

Future of Memory: Massive, Diverse, Tightly Integrated with Compute – from Device to Software

Shuhan Liu^{1*}, Robert M. Radway¹, Xinxin Wang¹, Jimin Kwon¹, Caroline Trippel², Philip Levis², Subhasish Mitra^{1,2}, <u>H.-S. Philip Wong^{1*}</u> ¹Department of EE, ²Department of CS, Stanford University, CA, USA.

(*E-mail: shliu98@stanford.edu, hspwong@stanford.edu)

Memory Needs Outpace Memory Advances

https://nano.stanford.edu/downloads/technology-integration-trend

Software Assumes Uniform Memory

A word-addressable random-access uniform memory address space

Software Use of Memory: Very Diverse

Data Analytics

Streams of data

- Write-once, read-once
- Filters (scans)
- Joins (random access)

Append-Mostly Databases

Read >> Write

- Write once
- Mostly append
- Read many times
- Scans
- Random access

Machine Learning Accelerator

High-Speed Networking

Blocked operations

Packet-oriented

- Blocked operations
- Sparse accesses
- Read multiple times
- Write many times

- Ultra-low latency
- Header processing
- Packet-oriented
- Read once
- Write once

Philip Levis, Differentiated Memory (DAM) Project white paper, https://dam.stanford.edu/

Diverse Memories

Various parts of this memory have to perform functions which differ somewhat in their nature and considerably in their purpose ... — J. von Neumann 1946

STT-MRAM

Spin transfer torque magnetic random access memory РСМ

Phase change memory

RRAM

Resistive switching random access memory

Gain Cell

Gain **c**ell memory (quasi-non-volatile)

FeRAM

Ferro-electric 1T1C memory (destructive read)

FeFET

Ferro-electric field effect transistor

Updated from: H.-S. P. Wong, S. Salahuddin, Nature Nanotech., 2015.

Diverse Memories

Focus on: integration of memory with new capabilities as a tool in our toolbox

STT-MRAM

Spin transfer torque magnetic random access memory PCM

Phase change memory

RRAM

Resistive switching random access memory

Gain Cell

Gain **c**ell memory (quasi-non-volatile)

FeRAM

Ferro-electric 1T1C memory (destructive read)

FeFET

Ferro-electric field effect transistor

Updated from: H.-S. P. Wong, S. Salahuddin, Nature Nanotech., 2015.

Massive Memory On-Chip

7

Future of Memory: Massive, Diverse, Tightly Integrated with Compute

Diverse Memory:

- How to choose?
- How to use?
- What attributes are important?

Exposing Hardware to Software

Abstraction Layer Needed

Search

Map data type to memory classes **R/W Energy** Capacity AI/ML SRAM Data lifetime **R/W Speed** training DRAM Data Type - C R/W statistics AI/ML **MEM Class - C** inference Granularity Flash Workload Activity profile Data Gain Cell profiling Latency analytics Endurance RRAM Data Type - B **MEM Class - B Bandwidth** Transactional MRAM Retention Power databases PCM Speed Knowledge **MEM Class - A** Integration **FeFET** extraction Data Type - A Process Area/cost **FeRAM**

Reliability

Density

Software Data Types

Type A "mostly read" – e.g. AI/ML inference weight memory and processor instruction caches Type B "streaming data" – e.g. streaming I/O, AI/ML activations, and data analytics Type C "frequent write" – e.g. buffers for a file system, AI/ML training memory

Type A "mostly read" – Frequent Reads, Infrequent Writes, Predictable Accesses

Trade-off write costs for better read

Data type	Example	Read Energy (pJ/bit)	Read Latency (ns)	Write Energy (pJ/bit)	Write Latency (ns)	Endurance (cycles)	Retention (s)	Capacity	Access granularity	Memory Today	Future Memory
Α	Instruction cache	< 0.5	< 1	< 500	< 1,000	> 1× 10 ⁸	>1	8KB-1MB	Word (8-16B)	SRAM	MRAM, RRAM

PCM

memory

STT-MRAM

Spin transfer torque magnetic random access memory Phase change Resistive

switching random access memory

RRAM

COMBINATION of Attributes Matters

Trade-off write costs for better read, but write also matters

Data type	Example	Read Energy (pJ/bit)	Read Latency (ns)	Write Energy (pJ/bit)	Write Latency (ns)	Endurance (cycles)	Retention (s)	Capacity	Access granularity	Memory Today	Future Memory
Α	Instruction cache	< 0.5	< 1	< 500	< 1,000	>1×10 ⁸	> 1	8KB-1MB	Word (8-16B)	SRAM	MRAM, RRAM

Example RRAM/MRAM : Write energy & endurance should be optimized together

Type B "streaming data" – Frequent Writes, Few Reads per Write, Short Data Lifetime

Trade-off retention for speed/density/energy

Data type	Example	Read Energy (pJ/bit)	Read Latency (ns)	Write Energy (pJ/bit)	Write Latency (ns)	Endurance (cycles)	Retention (s)	Capacity	Access granularity	Memory Today	Future Memory
В	Video streaming	< 200	< 1, 000	< 200	< 1,000	>1×10 ⁹	0.1 - 10	1KB-10MB	Page (KB)	DRAM	FeRAM, Gain Cell

Gain cell memory (quasi-non-volatile)

Ferro-electric 1T1C memory (destructive read)

Trade-off Design Knob Matters

Trade-off retention for speed/density/energy

Data type	Example	Read Energy (pJ/bit)	Read Latency (ns)	Write Energy (pJ/bit)	Write Latency (ns)	Endurance (cycles)	Retention (s)	Capacity	Access granularity	Memory Today	Future Memory
В	Video streaming	< 200	< 1, 000	< 200	< 1,000	>1×10 ⁹	0.1 - 10	1KB-10MB	Page (KB)	DRAM	FeRAM, Gain Cell

Oxide Semiconductor Gain Cell

Shuhan Liu, ..., H.-S. Philip Wong, IEDM 2023, T-ED 2024, VLSI 2024

Hybrid Gain Cell – High-density Scalable to N5

Optimize Tradeoff Guided by Software Use

Diverse Hardware Specs for Software Data Types A, B, C

Typical Memory Comparison

We may be working too hard for no good reason !

- Attributes in isolation
- Not application-correlated

	SRAM	DRAM	RRAM	MRAM
Energy	Low	Medium	High	High
Speed	High	Medium	Low	Low
Density	Low	Medium	High	High
Endurance	High	High	Low	Medium

Memory Comparison w/ Improvement Target

Improvements needed for each **memory** technology to be used in the **software** use cases, based on state-of-the-art macro demonstrations.

Data Type	SRAM	3D V- Cache	DRAM	OS-OS Gain Cell	Hybrid Gain Cell	RRAM	MRAM	РСМ	FeRAM
В	Density	Standby power	Retention	Capacity	Capacity	Endurance & write energy	Write energy	Endurance & write energy	Read energy

Type B "streaming data" – e.g. streaming I/O, AI/ML activations, and data analytics

Physical Layers with Interface Protocol (Today)

The KEY is INTEGRATION

Devices, Materials, Process Technologies, and Microelectronic Ecosystem Beyond the Exit of the Device Miniaturization Tunnel

160

H.-S. Philip Wong^D, *Life Fellow, IEEE*, and Subhasish Mitra^D, *Fellow, IEEE*

H.-S. P. Wong and S. Mitra, *IEEE Trans. Materials for Electron Devices* (T-MAT), 2024.

RRAM & Gain Cell Integration on Si CMOS: On-Chip Physical Integration

Shuhan Liu, ..., H.-S. Philip Wong, IEDM 2024, paper 15-3

RRAM & Gain Cell Integration on Si CMOS: On-Chip Architectural Integration

Shuhan Liu, ..., H.-S. Philip Wong, IEDM 2024, paper 15-3

RRAM non-volatility provides 9× System energy benefits

High-Capacity RRAM: 1T8R, 3D RRAM

Continuum of Interconnection Density

Inter-chip integration *continuum*

Interconnect Density – Inter-Chip Physical Integration

H.-S. P. Wong and S. Mitra, IEEE Trans. Materials for Electron Devices (T-MAT), 2024.

Illusion System – Inter-Chip Architectural Integration

Three Key Ideas: <u>Enough</u> on-chip memory + <u>Quick</u> chip ON/OFF + <u>Special</u> mapping

R.M. Radway, ... Subhasish Mitra, IEDM 2021, paper 25.4 and Nature Electronics 2021.

Illusion within 1.15 × Dream EDP

Illusion \approx Dream

1.15× Dream EDP

Illusion Energy

≤ 1.1×

Dream Energy

Illusion Exec. Time

≤ 1.05×

Dream Exec. Time

(measured for AI inference)

R.M. Radway, ... Subhasish Mitra, IEDM 2021, paper 25.4 and Nature Electronics 2021; K. Prabhu*, R.M. Radway*, ... Priyanka Raina, JSSC 2022.

Hardware-proven backed by theory

6 to 8 Chip Illusions 32 KB to 96 MB Systems

Future of Memory: Massive, Diverse, Tightly Integrated with Compute – from Device to Software

- <u>Massive</u> High-Density On-Chip Memory
- **Diverse** Memories Exposed to Software
- **<u>Tight Integration</u>** with Compute Physically and Architecturally

Acknowledgments

Semiconductor Research Corporation

CHIMES Center for Heterogeneous Integration

of Micro Electronic Systems

Stanford Differentiated Access Memories Project

Stanford NMTRI NON-VOLATILE MEMORY TECHNOLOGY RESEARCH INITIATIVE

Continuum of Interconnection Density

Inter-chip integration *continuum*