My Thoughts on Memory:

DRAM / Flash What is Different Now?
— Highly optimized process — Cost/bit no longer king

— 3-D already — Advanced packaging
— Liquid cooling
— Std process/planar First Steps (already Happening?)
— Replace large SRAM w/ DRAM
Memory Speed and power — DRAM w/ Flash (when possible)
— Mostly set by wires not cells
— Area set by wires/contacts in planar cells Creating New Commodity Memories
— Locality first DRAM chiplets
Power Generality Trade-off - Stacked SRAM

— Scatter data for best worst case
— Concentrate data for best locality
— But worst worst-case
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EMD Electronics is the electronics business of Merck KGaA, Darmstadt, Germany in the U.S. and Canada.

Inference-RAM

A novel multi-decadal memory category

Addressing the exponential growing demand for Al inference acceleration,
currently stifled by power hungry on-chip communication and off-chip DRAMS

Shridhar Mukund, Chief Systems Architect
January 1st, 2025

In collaboration with:
Stanford Differentiated Access Memories Project
https://MemoryDAX.Stanford.edu
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https://memorydax.stanford.edu/

Bringing On-Chip SRAM like read bandwidths at DRAM densities
Inference-RAM, A Read-Optimized Differentiated Access Long-Term Memory

An Option Besides CoWoS® — System-on-Wafer &
(TSMC-SoW™) e
CMOS
SoW (w/ SoC or SolC) Under Array [R] R

>40-ret., >60x HBM

Scalable for large clustered xPU in
next-gen data centers

Leverage InFO and CoWosS tech.

* InFO-SoW in production . BEO L I n fe re n Ce = RAM

2026

® CoW-SoW to be ready for .
3D Chiplet
‘ Orders of magnitude enhancement in m |Cro-vau It
compute power with higher energy
efficiency
CoWoS (SolC) CoWoS (SolC) Chip 1
3.3-ret., 8x HBM 5.5-ret., 12x HBM

80x80mm substrate >100x100mm substrate

AI Inference Chip

CoWos (SolC) Face-to-face bump-less bonds —»

2 8-ret., 12x HBM
>120x12pmm substrate

Clock, Address 1/0
R/W Data

Application Die

Inference-RAM Chiplet houses long-term intelligence,
which is fully determined at compile-time and is largely constant at run-time

Over-provisioned model parameters,
Over-provisioned KV caches,
Network-on-Chip (NoC) route tables
Program codes, activation function tables, ...

/ /
0’0 0’0
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/
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Targeting: >100x advantage in energy-delay product at <10x smaller silicon foot-print

% In collaboration with Differentiated Access Memories Project, Stanford University l . l
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together we advance_
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Al is Driving Massive Compute Demand

4-5x per year
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Jaime Sevilla and Edu Roldan, "Training Compute of Frontier Al Models Grows by 4-5x per Year," Epoch Al, May 28, 2024. [Online].
Available: https://epochai.org/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year



FLOP Trends and Requirements

Estimated Industry Generational FLOPs
10000TF

FLOPs increasing ~2X/2 years
Dedicated matrix-math datapaths

Al FLOPs: Reduced precision formats
With Al FLOPs, get ~2x/1.3 years

Architectural advancements
complement technology
advancements




Estimated Generational Memory Bandwidth

Memory Bandwidth

Memory Bandwidth must also double every ~2 years to
maintain a consistent bytes/FLOP ratio 10,078/

HBM bandwidth doubling only every ~4 years

= Power per stack has been increasing

To keep up with demand, HBM stacks per GPU must -
increase driving ever_|arger modules Feb-19 Jun-20 Oct21 V! Jul-24 Dec-25 Apr-27

We must find ways to reduce energy/bit Estimated HBM BW/stack

10000GB/s

2x/4 Years

1000GB/s

o HBM?

100GB/s
Dec-14 May-16 Sep-17 Feb-19 Jun-20 Oct21 Mar23 Jul-24 Dec-25 Apr-27

AMDZDU




Datacenter Memory

2.5D memory (HBM) is the norm
Expensive, but maximizes TCO

Reaching the limits of current HBM organization with centralized TSVs
As much as 90% of HBM power can be (largely horizontal) data movement

HBM Module

I

Accelerator (SoC)




Reducing Data Movement Energy

1600 5000

CPU Scale-up Scale-out

Register file Cache Memory interconnect interconnect

Communication energy grows »

exponentially with distance Maximizing locality is key to efficiency




Even Tighter Integration of Compute and Memory

DRAM layers -
Memory layers ———=
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Compute ——e

Processing in Processing in

Silicon Interposer
Memory Memory Controller

Higher Levels of Integration Enables Higher Bandwidth at Lower Power

On Board Memory 3D Hybrid Bond

pJ/bit ~12 ~3.5 ~0.2

Invest in scaling new logic-memory architectures

Image source: https://commons.wikimedia.org/wiki/File:SDRAM-Modul.jpg, Creative Commons 4.0. AMDn




Continual Disaggregation

Graphics Compute Die
(GCD)

Aggregated Memory
No L2 Cache NUMA
No HBM NUMA

Memory
Disaggregation

XCD

|
= Disaggregated Memory
. L2 Cache NUMA
uture

= Compute
(Accelerator
Complex Die)

= Network (I/O
Die)

Disaggregated Memory
L2 Cache NUMA
HBM Stack NUMA

Instinct GPUs DRAM Stack NUMA
Position within XCD NUMA

Architectural NUMA effects are
inevitable - our algorithms and
programming models must evolve to
effectively program them
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Better Performance with Spatially Aware Dispatch

100

Throughput (TFLOP/s)

Higher reuse from L2
Reduced DVFS throttling
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Meeting the Challenge Requires Holistic Innovation

= Advanced packaging

= New interconnects and memory

= System level integration

= Spatial computing architectures

= NUMA aware programming models

= Algorithm-software-hardware co-design







