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My Thoughts on Memory:
DRAM / Flash
- Highly optimized process
- 3-D already

SRAM
- Std process/planar

Memory speed and power
- Mostly set by wires not cells

- Area set by wires/contacts in planar cells

Power Generality Trade-off
- Scatter data for best worst case
- Concentrate data for best locality
- But worst worst-case

What is Different Now?
- Cost/bit no longer king
- Advanced packaging
- Liquid cooling

First Steps (already Happening?)
- Replace large SRAM w/ DRAM
- DRAM w/ Flash (when possible)

Creating New Commodity Memories
- Locality first DRAM chiplets
- Stacked SRAM
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Custom Silicon Requirements for AR Glasses Memory Challenges for On-Device LLM Use Cases

• Low power
• High performance
• Small form factor

• Large memory 
capacity

• High memory 
bandwidth

Expand Memory Capacity w/ 3D Integration, In-Package Memory (IPM) Solution & Interface Optimization

ü Integrate logic and memory with 3D 
technologies

ü Co-optimize memory for workload 
characteristics

ü Design for end-to-end systems

3D-Stacked SRAM Architecture

3D-IPM Architecture
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Inference-RAM
A novel multi-decadal memory category

In collaboration with:
Stanford Differentiated Access Memories Project
https://MemoryDAX.Stanford.edu

https://memorydax.stanford.edu/
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In collaboration with Differentiated Access Memories Project, Stanford University 

Inference-RAM Chiplet houses long-term intelligence, 
 which is fully determined at compile-time and is largely constant at run-time

v Over-provisioned model parameters, 
v Over-provisioned KV caches,
v Network-on-Chip (NoC) route tables
v Program codes, activation function tables, …

Bringing On-Chip SRAM like read bandwidths at DRAM densities

Inference-RAM, A Read-Optimized Differentiated Access Long-Term Memory

Targeting: >100x advantage in energy-delay product at <10x smaller silicon foot-print

Inference-RAM 
Chiplet

AI Inference Chip
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Jaime Sevilla and Edu Roldán, "Training Compute of Frontier AI Models Grows by 4-5x per Year," Epoch AI, May 28, 2024. [Online].
Available: https://epochai.org/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year

Fl
oa

tin
g 

Po
in

t O
pe

ra
tio

ns
 to

 T
ra

in
 

(L
og

 s
ca

le
)

Megatron-Turing NLG 530B
Nemotron 4

PaLM 2

GPT-3 175B (davinci)

GLM-130B

Llama 3-70B

Llama 2-70B

AlphaCode

GPT-3.5 Turbo

AlexaTM 20B
DALL-E

1.00E+18

1.00E+19

1.00E+20

1.00E+21

1.00E+22

1.00E+23

1.00E+24

1.00E+25

1.00E+26

9/22/2017 9/22/2018 9/22/2019 9/21/2020 9/21/2021 9/21/2022 9/21/2023 9/20/2024 9/20/2025

Publication Date

4-5x per year

9/18 9/19 9/219/209/17 9/22 9/259/23 9/24

AI is Driving Massive Compute Demand 
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FLOP Trends and Requirements

§ FLOPs increasing ~2X/2 years
§ Dedicated matrix-math datapaths
§ AI FLOPs: Reduced precision formats
§ With AI FLOPs, get ~2x/1.3 years

§ Architectural advancements 
complement technology 
advancements
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Estimated Industry Generational FLOPs
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Memory Bandwidth

§ Memory Bandwidth must also double every ~2 years to 
maintain a consistent bytes/FLOP ratio

§ HBM bandwidth doubling only every ~4 years
§ Power per stack has been increasing

§ To keep up with demand, HBM stacks per GPU must 
increase driving ever-larger modules

§ We must find ways to reduce energy/bit
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2x/2 Years

2x/4 YearsHBMs

HBMs
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Datacenter Memory

§ 2.5D memory (HBM) is the norm
§ Expensive, but maximizes TCO

§ Reaching the limits of current HBM organization with centralized TSVs
§ As much as 90% of HBM power can be (largely horizontal) data movement

HBM Module

Accelerator (SoC)
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Reducing Data Movement Energy

Communication energy grows 
exponentially with distance Maximizing locality is key to efficiency

Scale-up
interconnect

Scale-out
interconnect
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Even Tighter Integration of Compute and Memory

Invest in scaling new logic-memory architectures

On Board Memory 2.5D Micro-bumps (HBM) 3D Hybrid Bond

pJ/bit ~12 ~3.5 ~0.2

Processing in 
Memory

Processing in
Memory Controller

Higher Levels of Integration Enables Higher Bandwidth at Lower Power

DRAM layers

Compute

Silicon Interposer

Memory layers

Compute

Image source: https://commons.wikimedia.org/wiki/File:SDRAM-Modul.jpg, Creative Commons 4.0. 7



Aggregated Memory
No L2 Cache NUMA
No HBM NUMA

Disaggregated Memory
L2 Cache NUMA
HBM Stack NUMA
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Continual Disaggregation

Architectural NUMA effects are 
inevitable - our algorithms and 

programming models must evolve to 
effectively program them

Future 
Instinct GPUs

Disaggregated Memory
L2 Cache NUMA
DRAM Stack NUMA
Position within XCD NUMA
…
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GEMM Performance with Random Spatially-Unaware Dispatch
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Better Performance with Spatially Aware Dispatch

• Higher reuse from L2
• Reduced DVFS throttling
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§ Advanced packaging
§ New interconnects and memory
§ System level integration
§ Spatial computing architectures
§ NUMA aware programming models
§ Algorithm-software-hardware co-design

Hardware

Software and Applications

Meeting the Challenge Requires Holistic Innovation
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