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Abundant-Data Computing: e.g., AI/ML
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Compute Memory
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96%

Memory Wall

Deadly combination!

Miniaturization Wall
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AI/ML = Artificial Intelligence/Machine Learning



Computing Today
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N3XT 3D: Computation immersed in Memory
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Nano-Engineered Computing Systems Technology

Large Energy Delay Product (EDP) benefits

Dense memory Efficient logic 

Ultra-dense 
3D

Interleaved 
logic & memory 

layers

Collaborators: Prof. H.-S.P. Wong (Stanford) + others



N3XT 3D MOSAIC

5

O
n
-c

h
ip

 d
e
n
s
e
 3

D

Inter-chip integration continuum

MOnolithic / Stacked / Assembled IC

Collaborators: Prof. H.-S.P. Wong (Stanford) + others



N3XT 3D MOSAIC
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Inter-chip integration continuum

MOnolithic / Stacked / Assembled IC



Dense 3D Connections: Large Benefits
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Energy Delay Product benefits vs. today’s packaging

1 ×

10 ×

100 ×

1,000 ×

Density of 3D connections

6× 

100 - 600×

Apps: Crypto, Graph, Genomics, Sparse matrix, Neural nets. 

1X

10X

100X

1,000X

1X

10X

100X

1,000X

Monolithic 3D: only way today

N3XT 3D Chip

3K/mm2 100M/mm2

Multiple logic & memory layers in 3D

Through Silicon Vias

N3XT 

3D



N3XT 3D: Many Technologies 
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N3XT 3D Chip:

BEOL-compatible: ≤ 400°C fabrication

2-Phase 
Cooling

3D Thermal 
Scaffolding

Resistive 
RAM

Hybrid Gain 
Cell

Ferro-
electric

MRAM

Low-Temp. 
Si

Oxide FETs 2D 
materials

Carbon 
nanotubes

BEOL = Back-End-of-Line. CNFETs = Carbon Nanotube Field-Effect Transistors. MRAM = Magneto-resistive RAM. 



Many Activities On-going
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Lab-to-fab EMD collaboration

Industry fabs: many firsts

1. Carbon nanotube FETs (CNFETs)

2. U.S. foundry Resistive RAM (RRAM)

3. Ultra-dense monolithic 3D:

   CNFET+ RRAM + silicon CMOS

4. Product development: e.g.,           

AI inference
chip

Inference-RAM 
chiplet

Courtesy: S. Mukund (EMD Electronics)

Inference-RAM:

3D, dense, quick & low-energy read,

write ability sufficient for KV cache



[Rich DAC 23] Copper boiling heatsink = 106 W/m2/K [C. Zhang Adv. Funct. Mater. 18]

Today’s cooling inadequate
even with advanced heatsinks
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Compute

Compute

Memory

BEOL

N3XT 3D Thermal

Total 
ΔT (°C)

88%

ΔT3D

ΔTsink

Total ΔT = Tpeak − TextText

Tpeak

Thermal vias/power delivery network, 
floorplanning, scheduling, …

J. Cong et al., Proc. Int. Conf. Comput.-Aided Design., 2004.  
H. Wei et al., IEDM 2012. S. K. Samal et al., DAC 2014. J. Li 
et al., ACM Trans. Embedd. Comput. Syst. 2013.

4 AI 
accelerator 

layers

AI accelerator layers 3 12

Area overhead 5% 78%

ΔT3D dominates

Many 3D layers



Today’s BEOL3D Thermal Scaffolding

Today’s
Inter Layer Dielectric

  Low TC
☺  Ultra-low κ

Today’s
metal vias

  Area overhead
☺ High vertical TC

κ =
Dielectric constant

+ +

Memory

Compute

Compute

☺ High lateral TC
☺ Moderately low κ

Memory

Compute

Compute

Thermal dielectric

Thermal dielectric

New Thermal 
Inter Layer Dielectric

TC =
Thermal conductivity

Selectively placed:
co-placement algorithms

Memory

Compute

Compute

11[Rich DAC 23]
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Polycrystalline 
Diamond

SiO2

2 μm

Polycrystalline Diamond Thermal Dielectric

[Lyu IEDM 2024] Prof. S. Chowdhury (Stanford) BEOL = Back-end-of-line

Large benefits

(hardware test structure)

11.1×

10.0×
10.7×

SiO2

Film only
Scaffolding

30×30
(small)

40×40
(medium)

60×60
(large)

Heater Size (µm2)

Δ
T
 (

℃
)

0

100

200

300

TC κ
Today’s dielectric 0.2 2

Polycrystalline diamond 105 4

κ =
Dielectric constant

TC =
Thermal conductivity

500× better

BEOL-compatible: 

≤ 400°C fab

Hardware test structure
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Co-Placement Matters: 3D Thermal Scaffolding Results

Scaffolding vias for power

Power Delivery 

Benefits

0x

2x

4x

6x

8x

10x

Compute 
Tiers

Peak ΔT 
(°C) 

4× 10×

12

24

Existing Scaffolding

Peak ΔT = Tpeak –Tambient

Cooling Benefits

only 5.5% extra footprint area

Via

X

X X

X

X

X X

XVDD

VSS

[Rich ICCAD 24]

Hardware calibrated



N3XT 3D MOSAIC
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MOnolithic / Stacked / Assembled IC

Inter-chip integration continuum



Same dream as [Burks, Goldstein, Von Neumann, 1945] 15

“Dream” Chip: All Memory + Compute On-Chip

Massive on-chip memory: M✕N

Fits entire model

Data Buffers

Compute

Infeasible, Moving Target



[Radway Nature Electronics 21] Example network: 2D mesh shown for simplicity 16

Illusion Multi-Chip System

Optimize N, M’s, P’s, integration, mapping

Target: within 10% end-to-end EDP of “Dream” chip

M1

B

P1

M3

B

P3

M5

B

P5

M7

B

P7

M2

B

P2

M4

B

P4

M6

B

P6

M8

B

P8

N 
Total
Chips
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1. “Enough” Memory per Chip, Message Costs

Must achieve target Message Costs

Excessive intra-layer 
parallelism expensive

Naïve inter-layer pipelining 
expensive

Message latency & 
energy dominate
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Chips

Compute Energy
Message Energy

(Left) ResNet-18 1.1.Conv2. Parallelism [Shao Micro 19], no sync cost. (Right) 16-chip 187 MByte ResNet
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Pipeline Stages

Message latency can be
hidden, message energy dominates



In Time
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2. Spatiotemporal Fine-grained Power-Gating

C1
C2
C3
C4
C5
C6

Time

Idle energy overheads must be ~0
(validated on our MINOTAUR multi-chip system hardware)

Compute ShutdownMessage

Avoid (grey) idle intra- and inter-input

In Space

Idle memory power quickly dominates

0

500
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1 4 16
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Chips

Active Memory
Idle Memory



Illusion Mapping
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𝑣 = 1

𝑣 = 2

𝑣 = 4𝑣 = 3

𝑣 = 5

𝑣 = 6

𝑣 = 8

𝑒1,2

𝑒1,3 

…

Chip Assignment:

𝑖 = 1, 𝑖 = 2, 𝑖 = 3, …

𝑣 = 7

PE Assignment:

𝑗 = 1, 𝑗 = 2, 𝑗 = 3, …

AI/ML Model

Operator Graph G
Vertices = Tensor Operations
Edges = Data Dependencies

Gurobi Solver

Mixed Integer Quadratic Programming (MIQP)

Prof. R. Radway (U. Penn)



Illusion MIQP vs. Existing Approaches
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Shao

MICRO ‘19 

Narayanan

SOSP ‘19

Unger 

OSDI ‘22

Tarnawski

NeurIPS ‘20

Wang 

ICML ’24
Our

Method

Pre-defined

Communication
Patterns

Dynamic 

Programming 
(DP)

Graph 

Search

Mixed Integer 

Linear 
Programming 

(MILP)

MILP + DP MIQP

True Minimum N/A No Yes No Yes

Computational 

Cost Model
Measured Performance Profiler Architectural Model

Cycle-Accurate 

Simulation + 
Emulation + HW 

Validation

Target
Latency / 

Throughput

Training Speedup

/ Throughput
Latency / Throughput

Energy-Delay Product 

or Energy or Latency 
or Throughput

Interconnect 

Topology
Fixed Fixed Variable Fixed Fixed Arbitrary

Runtime N/A Profiling Time Minutes Seconds Hours
Minutes for

64⨉ larger models
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Transformers & CNNs

Utilization 93%

Static memory 
power

19× lower 
(vs. foundry SRAM)

Active memory 
power

3.4× lower
(vs. no fine-grained 
power management)

On-chip training
Yes: new 
algorithm

[K. Prabhu VLSI 2024] NVM = Non-Volatile Memory (RRAM in this case). Collaborator: Prof. P. Raina (Stanford) 

MINOTAUR: Transformer NVM Edge AI Inference & Training

12 MBytes RRAM

RRAM Controllers

2 MBytes 

SRAM 

Neural 

Network 

Accelerator

64b 

RISC-V 

Rocket 

CPU

PMU

C2C

C
2
C

C2C

C
2
C

1
6
 B
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Always-On

SRAM Bank

RRAM Ctrl.

RRAM Macro

Accelerator 

Core 



MINOTAUR Illusion: 96-MByte Transformers
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Illusion In Hardware

Chips 8 MINOTAUR

Total RRAM Up to 96 MB

Total SRAM Up to 16 MB

C2C Links 4 TX/RX per chip

Networks
CNNs, 

Transformers



MINOTAUR Illusion: 96-MByte Transformers
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Illusion In Hardware

BERT Encoders scaled to chip count

<10% of Dream energy and execution time
Demonstrated on MINOTAUR with BERT scaled from 1-8 Chips



16 chips, 288-layer 187 MB ResNet, 16 encoder 186 MB MobileBERT. Traditional parallel applied 
iso-hardware using approach in [Shao MICRO 19]. EDP relative to Dream Chip.
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Traditional Parallel vs. Illusion System
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0×

4×

8×

12×

13×11×

<10% <10%

ResNet Workload MobileBERT Workload

Memory/compute Always on
Fast, fine-grained 

on/off

Chip-to-chip Saturated Sparse

Traditional Parallel Illusion System

Dream Chip Traditional Parallel Illusion System

2.5x due to idling during messaging
Eliminated by Sparse C2C Use

1.5x due to messaging energy
Eliminated by Sparse C2C Use

3x due to idle energy
Eliminated by fine-grained on/off



Compiler-Based Flow
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Illusion via Emulation (Beyond Hardware Demos)

Parameterized system-scale 
emulation

Chip 
1

C2C

C
2
C Chip 

2

C2C

Chip 
3

C2C

C
2
C Chip 

4

C2C

Chip 
5

C2C

C
2
C Chip 

6

C2C

Chip 
7 C

2
C Chip 

8

Workload
Multichip 

Model

Mapping and 
Compilation

Hardware 
Generator

Executable 
Program

Hardware 
Artifacts

Simulation and 
Emulation

Cycle-accurate results in minutes not days

Many thanks to Cadence!
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Emulation Challenges for Illusion: Electrical Aspects

Power Delivery 
Network (PDN)

Power cycling charges 
& discharges PDN

120 uJ to wakeup & 
shutdown

Chip-to-Chip Links

Realized parasitic vs. 
modeled differ

Energy 3.4× less 
(Conservative model 

for timing closure)

Clock Tree

Nonzero off power

0.56 mW of 
always on power

Meticulous hardware calibration essential

(multi-chip MINOTAUR system in our case)
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Illusion Demonstrated In Hardware and Emulation

Dream Hardware Emulation (Uncalibrated)

Illusion demonstrations agree within 5%

BERT Encoders on MINOTAUR (12 MB per chip): 16-chip workloads also emulated

Emulation
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BERT Scaled Deeper by the Number of Chips



Large Benefits

Heuristics Essential to MIQP Scalability
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• Initial solution 

within 25% of true 

minimum solution

• Problem setup 10-

35⨉ faster 

Warm Start
• Greedy algorithm as 

feasible solution

•  Aggressively cuts 
bound on optimal 

solution (gap)

Memoization
• Pre-compute 
independent nodes 

and encode as 
vectorized, sparse 

constraints

Custom HeuristicsConstraints

𝑚𝑖𝑛
𝑻𝒐𝒕𝒂𝒍𝑬𝒙𝒆𝒄𝒖𝒕𝒊𝒐𝒏𝑻𝒊𝒎𝒆
× 𝑻𝒐𝒕𝒂𝒍𝑬𝒏𝒆𝒓𝒈𝒚

s. t.
(1)

෍

𝑖=1

𝑛

𝑥𝑣𝑖 = 1 ∀ 𝑣 ∈ 𝑉

(2) 𝑀 ≥ ෍
𝑣

𝑚𝑣 𝑥𝑣𝑖 ∀ 𝑖 ∈ (1, … , 𝑛)

(3) 𝑥𝑣𝑖 ∈ {0,1}
∀ 𝑣 ∈ 𝑉 ; ∀ 𝑖 
∈ (1, … , 𝑛)

(4) 𝐶𝑣𝑖 ≥ (𝑥𝑢𝑖 − 𝑥𝑣𝑖)
∀𝑒𝑢,𝑣 ∈ 𝐸 ; ∀ 𝑖 

∈ (1, … , 𝑛)

(5)
𝑇𝑜𝑡𝑎𝑙𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒(𝑇𝐸𝑇)  
≥ 𝑂𝐸𝑣

∀ 𝑣 ∈ 𝑉

(6) 𝑂𝑆𝑖 ≥ 𝑂𝐸𝑣𝐶𝑣𝑖
∀ 𝑣 ∈ 𝑉 ; ∀ 𝑖 
∈ (1, … , 𝑛)

(7) 𝐿𝑀𝑖 ≥ ෍
𝑢

𝑒𝑢,𝑣𝐶𝑣𝑖 𝑀𝐿 ∀ 𝑖 ∈ (1, … , 𝑛)

(8) 𝐶𝐸𝑇𝑖 ≥ ෍
𝑣

𝑥𝑣𝑖 𝐷𝑣 ∀ 𝑖 ∈ (1, … , 𝑛)

(9)
𝑂𝐸𝑣

≥ 𝑥𝑣𝑖 × (𝑂𝑆𝑖 + 𝐿𝑀𝑖 + 𝐶𝐸𝑇𝑖)
∀ 𝑣 ∈ 𝑉 ; ∀ 𝑖 
∈ (1, … , 𝑛)

(10) 𝐸𝑀𝑖 ≥ ෍
𝑢

𝑒𝑢,𝑣𝐶𝑣𝑖 𝑀𝐸 ∀ 𝑖 ∈ (1, … , 𝑛)

(11) 𝐸𝐶𝑖 ≥ 𝑃𝑖,𝑎𝑐𝑡𝑖𝑣𝑒 𝐶𝐸𝑇𝑖 ∀ 𝑖 ∈ (1, … , 𝑛)

(12) 𝐸𝐼𝑖 ≥ 𝑃𝑖,𝐼𝑑𝑙𝑒 (𝑇𝐸𝑇 − 𝐶𝐸𝑇𝑖) ∀ 𝑖 ∈ (1, … , 𝑛)

Model 

Size
Nodes Edges Chips Variables Constraints

Illusion EDP

Overhead 
vs. Dream

Solve Time

1x 69 77 1 4971 314 0% 0.1s

2x 125 141 2 16393 689 0% 0.4s

4x 237 269 2 57625 1265 1.94% 0.8s

8x 461 525 3 216275 2894 1.59% 2.2s

16x 909 1037 4 835501 6571 1.18% 6.2s

32x 1805 2061 6 3283553 16613 2.79% 22.6s

64x 3597 4109 10 13018057 47449 1.16% 387.7s

128x 7181 8205 17 51826303 144932 0.16% 5739.8s

128X Larger ResNet Still Tractable With MIQP

Also explored:

Highly parallel models (64 branches)

Fine-grained Transformer parallelism 
Different chip and network configurations

…



Illusion Scaleup: On-going

[Radway IEDM 21] Linear improvements in electrical links through tight integration [das Sharma, Nature Electronics 24]

Logic
Mem

Logic
Mem
Logic
Mem

Logic
Mem

Logic
Mem
Logic
Mem

Increase dense 3D layers

Linear

Improve chip-to-chip links

Linear + one-time gains

Multiplicative effect

Maintain Illusion despite exponential workload growth over fixed time

Reduce total messages Reduce per-message cost 

GBytes/s Bytes/pJ

29



Conclusion

30

 N3XT 3D MOSAIC

◼ Overcome memory wall & miniaturization wall, successful lab-to-fab

◼ Large system-level Energy Delay Product benefits for AI/ML 

 3D Thermal Scaffolding: high-power compute in 3D

◼ Co-design: thermal dielectric + 3D architecture + 3D physical design

 Multi-chip Illusion: large AI/ML workloads

◼ Hardware results demo effectiveness, superior vs. traditional parallel 
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