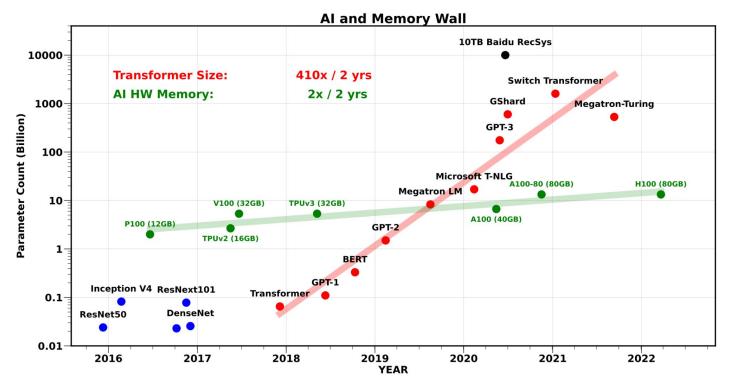
GainSight: fine-grained profiler for designing heterogeneous on-chip memories for AI accelerators

> Peijing Li, <u>peli@stanford.edu</u> Thierry Tambe, <u>ttambe@stanford.edu</u>

January 10, 2025

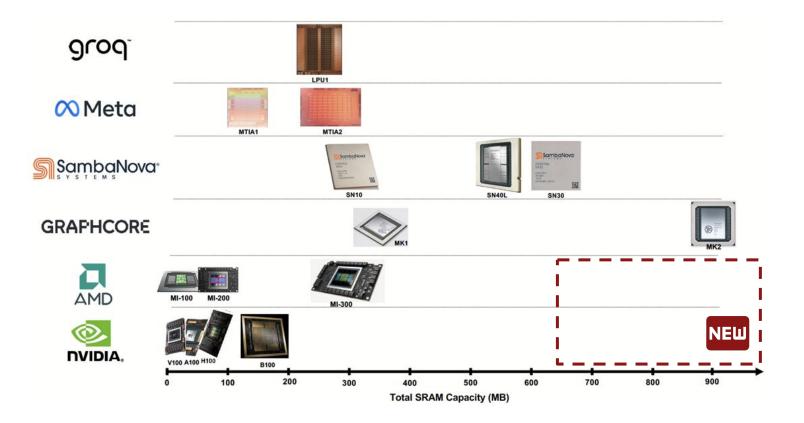
Stanford ENGINEERING

AI and the Memory Capacity Wall

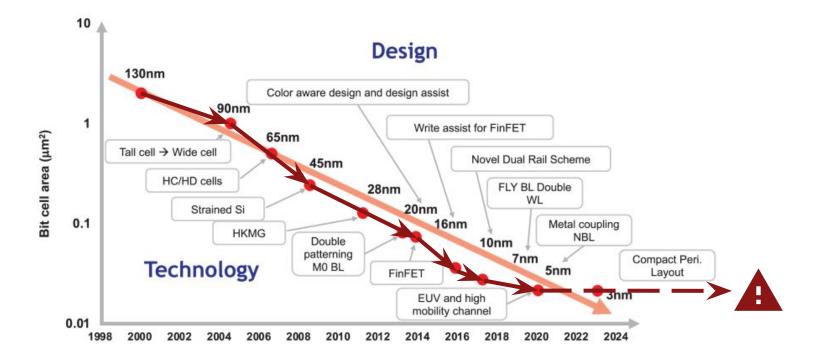


Source: [1] A. Gholami, Z. Yao, S. Kim, C. Hooper, M. W. Mahoney, and K. Keutzer, "AI and Memory Wall," Mar. 21, 2024, arXiv: arXiv:2403.14123. doi: 10.48550/arXiv.2403.14123.

Trend towards Increasing On-Chip SRAM



SRAM Scaling is Ending



Source: [1] K. Zhang, "1.1 Semiconductor Industry: Present & Future," in 2024 IEEE International Solid-State Circuits Conference (ISSCC), Feb. 2024, pp. 10–15. doi: 10.1109/ISSCC49657.2024.10454358.

Stanford ENGINEERING

At a Glance

Motivation for non-SRAM On-Chip Memories and Fine-Grained Data Cache Access Pattern Profiling

2 Methodologies: Profiler with Retargetable Hardware Backend and Flexible Frontend

3 Preliminary Experiments and Next Steps

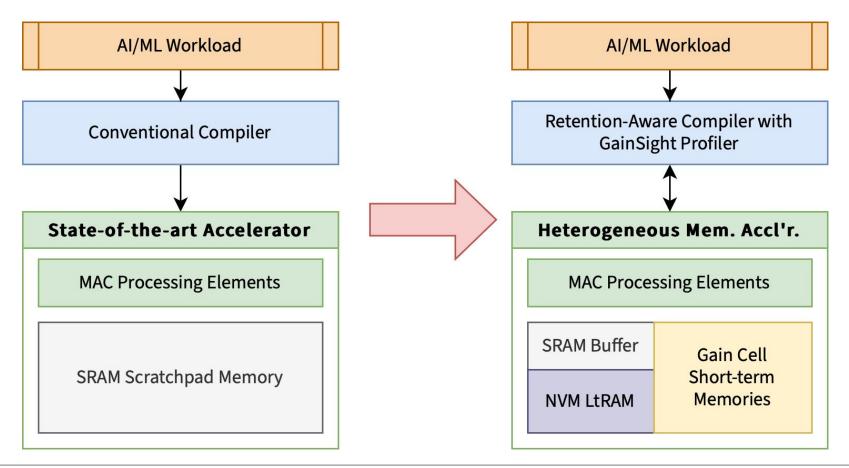
Motivations for Fine-Grained On-Chip Memory Profiling

Stanford ENGINEERING Electrical Engineering

Alternative On-Chip Memories

	SRAM	DRAM	Block Flash	Long-term RAM	Short-term RAM
Structure	6Т	1T1C	1G	FeRAM, MRAM, RRAM, FRAM	2T or 3T gain cells
Benefits	Fast, easy to integrate, low static power	Dense	Huge capacity	Dense, low read energy	Dense, low energy
Drawbacks	Sparse	No logic, high power	No logic, low endurance, expensive & slow erases, block access only, low bandwidth	Expensive & slow writes, limited endurance	Short retention times, expensive refreshes, active research
Uses	Fast R/W caches	Large, random access R/W data	Large, mostly read data	Rare writes, static data caches	Fast write-and-read operations

Our Vision



Our Vision

- Breaking the memory wall with alternative on-chip memory
 - Replace SRAM with devices 3x capacity and 0.3x leakage power
- The tuning of memory components affect performance
- "Memory profile-guided HW-SW codesign"
- Build a **profiler** that can measure **lifetimes** and other **fine-grained** memory access **patterns** to guide DSE
- Each DSA for each different memory-bound workload can be optimized and aligned with the ideal heterogeneous memory configuration and tuning

GainSight Organization

Requirements for Profiler Tool

The profiler tool should be able to work for different processing elements for DSE.

- Off-the-shelf GPGPUs
- Systolic arrays
- Dataflow architectures
- ... & More!

"Retargetable backend"

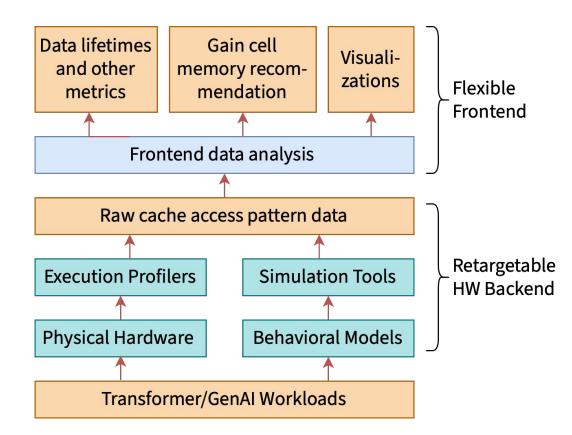
The profiler tool should be able to offer a variety of DSE insights based on domain knowledge.

- Raw lifetime and R/W freq
- What kind of gain cell to use
- Projected # of refreshes
- Comparison between gain cell design and SRAM

"Flexible frontend"

GainSight High-Level Organization

- Retargetable Backend
 - Work for different processing elements.
- Flexible Frontend
 - Offer a variety of DSE insights based on domain knowledge.

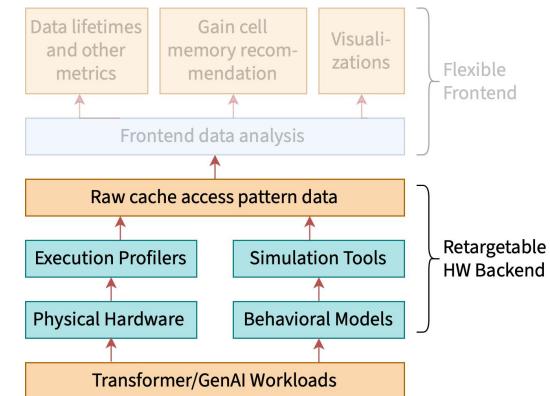


Retargetable Hardware Backends

- **Execution-based profilers** on physical hardware
 - NVIDIA Hopper GPU
 - Faster execution times for larger workloads

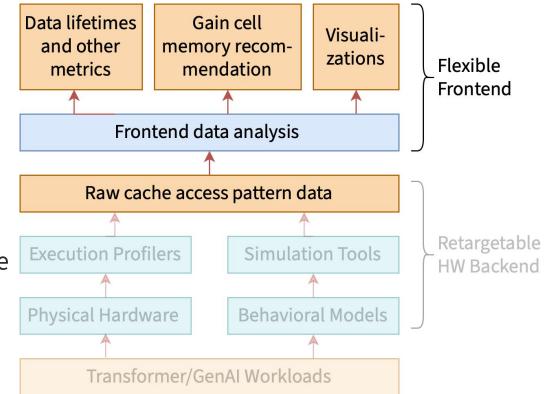
- Simulators for

- C++/SystemC/RTL models
 - GPGPU-Sim/Accel-Sim
 - NVDLA
 - ESP Systolic Array
 - Gemmini
 - More accurate results for smaller workloads



Flexible Frontend

- <u>Numerical results for data</u>
 <u>lifetimes and R/W freq.</u> and
 <u>visualizations</u>
- Analytical models of memory arrays, compare measured results with KPIs from model
- Recommend ideal heterogeneous config and tune
- Report KPI **improvements** over SRAM array



Preliminary Experiments

Stanford ENGINEERING

Understanding Workload Behavior

1. Task description

- a. Hypothetically replace cache in NVIDIA GPUs with gain cell RAM and other heterogenous memories
- b. Measure **lifetimes** and estimate number of **refreshes** needed

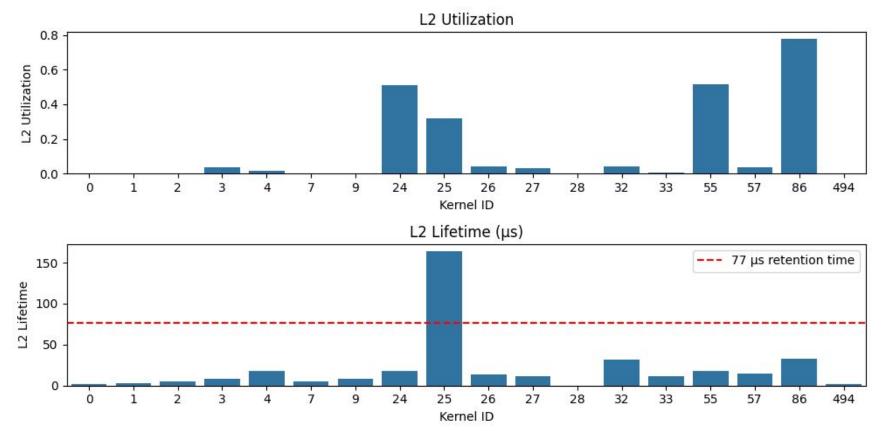
2. Methodology

- a. *Execution based backend* run entire transformer workloads
- b. Inspect results and isolate "interesting" outlying kernels
- c. Rerun kernels in *simulation based backend* for more precise results
- d. Design choices on heterogeneous memory configurations
- 3. Demonstration on how this may be able to work...

Experiment 1: Transformer on NVIDIA GPU

- Workload: Simple **word prediction model** inference
 - Two transformer layers with two attention heads each
 - 13 million parameters
- Backend: Physical NVIDIA Hopper H100 GPU
 - Custom profiling **execution** with NVBit and NVIDIA Nsight Compute
 - Approximate per-kernel data lifetimes and R/W frequencies
- Frontend: *per-kernel* visualizations
 - Cache utilization: % of cache lines used by data in the kernel
 - L1/L2 read/write frequencies
 - L1/L2 lifetimes and required refreshes (based on 77 μs retention time from Giterman et al. (2020)'s CMOS gain cells)

Experiment 1 L2 Results



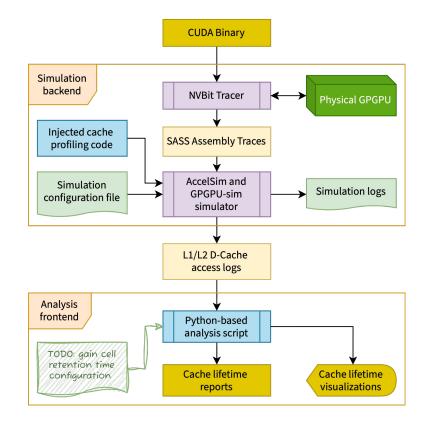
Retention time reference: R. Giterman, A. Shalom, A. Burg, A. Fish, and A. Teman, "A 1-Mbit Fully Logic-Compatible 3T Gain-Cell Embedded DRAM in 16-nm FinFET," IEEE Solid-State Circuits Letters, vol. 3, pp. 110–113, 2020, doi: 10.1109/LSSC.2020.3006496.

Stanford ENGINEERING

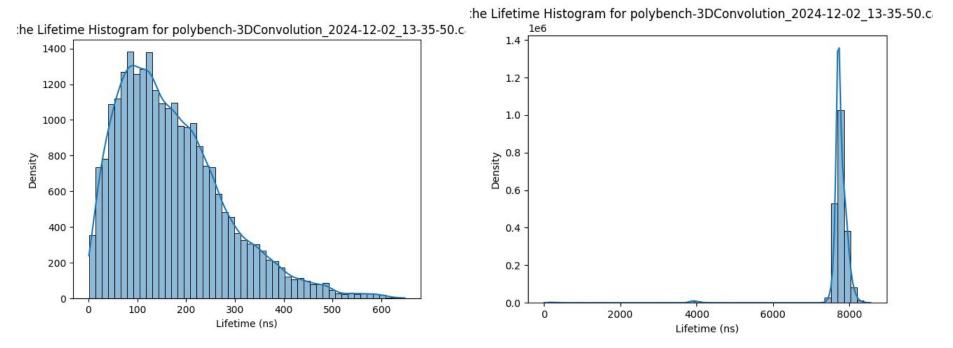
Electrical Engineering

Experiment 2: PolyBench on GPGPU-Sim

- Workload: benchmarks consisting of single-kernel test programs
 - 2D convolution kernel, 3D convolution kernel, GEMM kernel
- Backend: Accel-Sim and GPGPU-Sim
 - Modded **simulator** of NVIDIA GPUs
 - Captures cycle-accurate cache access information for each instruction
- Frontend: *per-address* visualizations
 - L1 and L2 lifetime distributions for *each cache line*



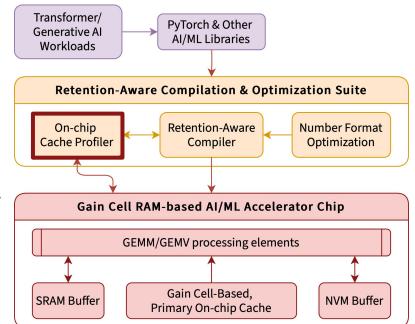
Execution Results – 3D Convolution



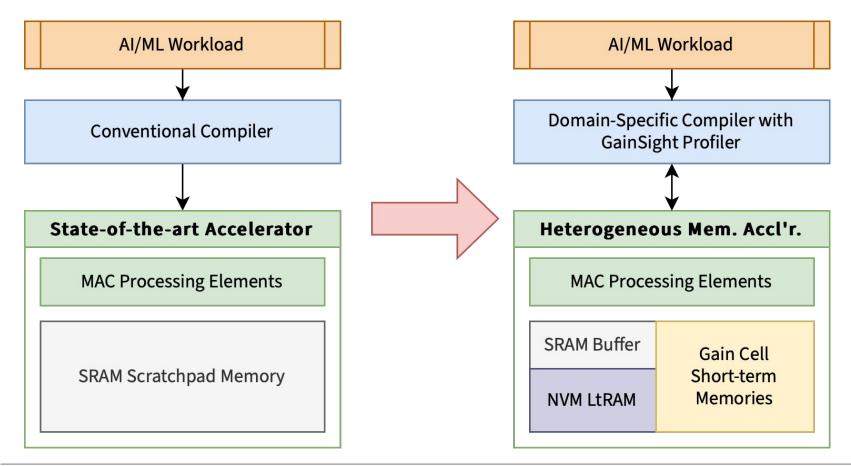
Next Steps

Next Steps for Proof-of-Concept Design

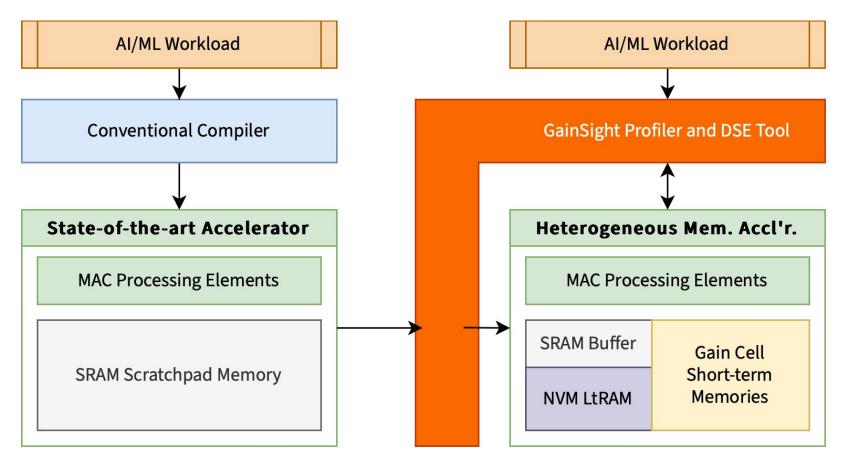
- Implement more HW backends (e.g., systolic array, dataflow accelerators)
- Frontend analytical models
- Goal: build a proof of concept AI
 accelerator chip using gain cells as primary on-chip, short term memory
 - 3x cell density, <0.3x leakage power
- First in a series of SW tools for retention aware compilation suite



Rounding Out Our Vision



Rounding Out Our Vision



Stanford ENGINEERING

Electrical Engineering

Thank You!

Stanford ENGINEERING