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Al and the Memory Capacity Wall
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Source: [1] A. Gholami, Z. Yao, S. Kim, C. Hooper, M. W. Mahoney, and K. Keutzer, “Al and Memory Wall,” Mar. 21, 2024, arXiv:
arXiv:2403.14123. doi: 10.48550/arXiv.2403.14123.
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Trend towards Increasing On-Chip SRAM
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SRAM Scaling is Ending
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Source: [1] K. Zhang, “1.1 Semiconductor Industry: Present & Future,” in 2024 IEEE International Solid-State Circuits Conference (ISSCC),
Feb. 2024, pp. 10-15. doi: 10.1109/ISSCC49657.2024.10454358.
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At a Glance

1 Motivation for non-SRAM On-Chip Memories and Fine-Grained
Data Cache Access Pattern Profiling

2 Methodologies: Profiler with Retargetable Hardware Backend
and Flexible Frontend

3 Preliminary Experiments and Next Steps
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Motivations for Fine-Grained
On-Chip Memory Profiling
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Alternative On-Chip Memories

SRAM DRAM Block Flash Long-term RAM Short-term RAM
Structure 6T 1T1C 1G FeRAM, MRAM, 2T or 3T gain cells
RRAM, FRAM
Benefits Fast, easy to Dense Huge capacity Dense, low read Dense, low energy
integrate, low energy
static power
Drawbacks | Sparse No logic, high No logic, low Expensive & slow Short retention
power endurance, writes, limited times, expensive
expensive & slow endurance refreshes, active
erases, block research
access only, low
bandwidth
Uses Fast R/W Large, random | Large, mostly read | Rare writes, static | Fast
caches access R/W data data caches write-and-read
data operations
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Our Vision

Al/ML Workload

v

Al/ML Workload

Conventional Compiler

v

!

Retention-Aware Compiler with
GainSight Profiler

State-of-the-art Accelerator

!

Heterogeneous Mem. Accl'r.

MAC Processing Elements

MAC Processing Elements

SRAM Scratchpad Memory

SRAM Buffer Gain Cell
Short-term
NVM LtRAM Memories
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Our Vision

Breaking the memory wall with alternative on-chip memory
Replace SRAM with devices 3x capacity and 0.3x leakage power

- The tuning of memory components affect performance

- “Memory profile-guided HW-SW codesign”

- Build a profiler that can measure lifetimes and other
fine-grained memory access patterns to guide DSE

- Each DSA for each different memory-bound workload can be
optimized and aligned with the ideal heterogeneous memory
configuration and tuning
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GainSight Organization
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Requirements for Profiler Tool

The profiler tool should be The profiler tool should be able to
able to work for different offer a variety of DSE insights
processing elements for DSE. based on domain knowledge.
. Off-the-shelf GPGPUs - Raw lifetime and R/W freq
- Systolic arrays - What kind of gain cell to use
Dataflow architectures - Projected # of refreshes
... & More! - Comparison between gain cell
“Retargetable backend” design and SRAM
ﬁ “Flexible frontend”
D
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GainSight High-Level Organization

- Retargetable Backend
- Work for different

processing elements.
- Flexible Frontend

- Offer avariety of DSE
insights based on domain
knowledge.

Data lifetimes Gain cell
and other memory recom-
metrics mendation

Visuali-
zations

A

A

A

Frontend data analysis

A

Raw cache access pattern data

A

A

Execution Profilers

Simulation Tools

J

4

A

Physical Hardware

Behavioral Models

A

\

Transformer/GenAl Workloads

Flexible
Frontend

Retargetable
HW Backend
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Retargetable Hardware Backends

- Execution-based profilers on
physical hardware
- NVIDIA Hopper GPU
- Faster execution times for
larger workloads

- Simulators for A

C++/SystemC/RTL models Raw cache access pattern data h
- GPGPU-Sim/Accel-Sim A A
- NVDLA Execution Profilers Simulation Tools - Elscaégitkaetr)llg
- ESP Systolic Array A A
- Gemmini Physical Hardware Behavioral Models | |
- More accurate results for A

smaller workloads Transformer/GenAl Workloads
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Flexible Frontend

- Numerical results for data
lifetimes and R/W freq. and
visualizations

- Analytical models of memory
arrays, compare measured
results with KPIs from model

- Recommend ideal
heterogeneous config and tune

- Report KPl improvements
over SRAM array

Data lifetimes Gain cell . .
Visuali-
and other memory recom- .
) ) zations
metrics mendation

A A A

Frontend data analysis

}_

A

Raw cache access pattern data

Flexible
Frontend
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Preliminary Experiments
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Understanding Workload Behavior

1. Task description
a. Hypothetically replace cache in NVIDIA GPUs with gain cell RAM and other

heterogenous memories
b. Measure lifetimes and estimate number of refreshes needed

2. Methodology
a. Execution based backend - run entire transformer workloads
b. Inspect results and isolate “interesting” outlying kernels
c. Rerun kernels in simulation based backend for more precise results

d. Design choices on heterogeneous memory configurations
3. Demonstration on how this may be able to work...
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Experiment 1: Transformer on NVIDIA GPU

- Workload: Simple word prediction model inference
- Two transformer layers with two attention heads each
- 13 million parameters
- Backend: Physical NVIDIA Hopper H100 GPU
- Custom profiling execution with NVBit and NVIDIA Nsight Compute
- Approximate per-kernel data lifetimes and R/W frequencies
- Frontend: per-kernel visualizations

- Cache utilization: % of cache lines used by data in the kernel
- L1/L2 read/write frequencies

- L1/L2 lifetimes and required refreshes (based on 77 us retention time from
Giterman et al. (2020)’s CMOS gain cells)
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Experiment 1 1.2 Results
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Retention time reference: R. Giterman, A. Shalom, A. Burg, A. Fish, and A. Teman, “A 1-Mbit Fully Logic-Compatible 3T Gain-Cell Embedded DRAM in 16-nm
FinFET,” IEEE Solid-State Circuits Letters, vol. 3, pp. 110-113, 2020, doi: 10.1109/LSSC.2020.3006496.
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Experiment 2: PolyBench on GPGPU-Sim

- Workload: benchmarks consisting of

single-kernel test programs
- 2D convolution kernel, 3D convolution
kernel, GEMM kernel

- Backend: Accel-Sim and GPGPU-Sim
- Modded simulator of NVIDIA GPUs
- Captures cycle-accurate cache access
information for each instruction
- Frontend: per-address visualizations
- L1 and L2 lifetime distributions for each
cache line

CUDA Binary
Simulation J v
backend i
NVBit Tracer Physical GPGPU
Injected cache
profiling code _|_> SASS Assembly Traces
Simulation AccelSim and ) :
configuration file > GPGPU-sim » Simulation logs
L —— simulator P
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L1/L2 D-Cache
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Execution Results — 3D Convolution
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Next Steps
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Next Steps for Proof-of-Concept Design

- Implement more HW backends (e.g.,

systolic array, dataflow accelerators) { E——— —
. Generative Al ytorc i rariees,r
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Rounding Out Our Vision

Al/ML Workload

v

Al/ML Workload

Conventional Compiler

v

!

Domain-Specific Compiler with
GainSight Profiler

State-of-the-art Accelerator

!

Heterogeneous Mem. Accl'r.

MAC Processing Elements

MAC Processing Elements

SRAM Scratchpad Memory

SRAM Buffer Gain Cell
Short-term
NVM LtRAM Memories
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Rounding Out Our Vision

Al/ML Workload

Al/ML Workload

v

Conventional Compiler

!

GainSight Profiler and DSE Tool

State-of-the-art Accelerator

Heterogeneous Mem. Accl'r.

MAC Processing Elements

SRAM Scratchpad Memory

MAC Processing Elements

SRAM Buffer Gain Cell
Short-term
NVM LtRAM Memories
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Thank You!
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