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AI and the Memory Capacity Wall

Source: [1] A. Gholami, Z. Yao, S. Kim, C. Hooper, M. W. Mahoney, and K. Keutzer, “AI and Memory Wall,” Mar. 21, 2024, arXiv: 
arXiv:2403.14123. doi: 10.48550/arXiv.2403.14123.



Trend towards Increasing On-Chip SRAM
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SRAM Scaling is Ending
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Source: [1] K. Zhang, “1.1 Semiconductor Industry: Present & Future,” in 2024 IEEE International Solid-State Circuits Conference (ISSCC), 
Feb. 2024, pp. 10–15. doi: 10.1109/ISSCC49657.2024.10454358.
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At a Glance

Preliminary Experiments and Next Steps

Methodologies: Profiler with Retargetable Hardware Backend 
and Flexible Frontend

Motivation for non-SRAM On-Chip Memories and Fine-Grained 
Data Cache Access Pattern Profiling 



Motivations for Fine-Grained 
On-Chip Memory Profiling 
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Alternative On-Chip Memories
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SRAM DRAM Block Flash Long-term RAM Short-term RAM

Structure 6T 1T1C 1G FeRAM, MRAM, 
RRAM, FRAM

2T or 3T gain cells

Benefits Fast, easy to 
integrate, low 
static power

Dense Huge capacity Dense, low read 
energy

Dense, low energy

Drawbacks Sparse No logic, high 
power

No logic, low 
endurance, 
expensive & slow 
erases, block 
access only, low 
bandwidth

Expensive & slow 
writes, limited 
endurance

Short retention 
times, expensive 
refreshes, active 
research

Uses Fast R/W 
caches

Large, random 
access R/W 
data

Large, mostly read 
data

Rare writes, static 
data caches

Fast 
write-and-read 
operations



Our Vision
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Our Vision
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- Breaking the memory wall with alternative on-chip memory
- Replace SRAM with devices 3x capacity and 0.3x leakage power

- The tuning of memory components affect performance
- “Memory profile-guided HW-SW codesign”
- Build a profiler that can measure lifetimes and other 

fine-grained memory access patterns to guide DSE
- Each DSA for each different memory-bound workload can be 

optimized and aligned with the ideal heterogeneous memory 
configuration and tuning



GainSight Organization
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Requirements for Profiler Tool
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The profiler tool should be 
able to work for different 
processing elements for DSE.

- Off-the-shelf GPGPUs
- Systolic arrays
- Dataflow architectures
- … & More!

“Retargetable backend”

The profiler tool should be able to 
offer a variety of DSE insights 
based on domain knowledge.

- Raw lifetime and R/W freq
- What kind of gain cell to use
- Projected # of refreshes 
- Comparison between gain cell 

design and SRAM 
“Flexible frontend”



GainSight High-Level Organization
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- Retargetable Backend
- Work for different 

processing elements.

- Flexible Frontend
- Offer a variety of DSE 

insights based on domain 
knowledge.



Retargetable Hardware Backends

13

- Execution-based profilers on 
physical hardware

- NVIDIA Hopper GPU 
- Faster execution times for 

larger workloads
- Simulators for 

C++/SystemC/RTL models
- GPGPU-Sim/Accel-Sim
- NVDLA
- ESP Systolic Array
- Gemmini
- More accurate results for 

smaller workloads



Flexible Frontend

14

- Numerical results for data 
lifetimes and R/W freq. and 
visualizations

- Analytical models of memory 
arrays, compare measured 
results with KPIs from model

- Recommend ideal 
heterogeneous config and tune

- Report KPI improvements 
over SRAM array



Preliminary Experiments
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Understanding Workload Behavior
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1. Task description
a. Hypothetically replace cache in NVIDIA GPUs with gain cell RAM and other 

heterogenous memories
b. Measure lifetimes and estimate number of refreshes needed

2. Methodology
a. Execution based backend – run entire transformer workloads
b. Inspect results and isolate “interesting” outlying kernels
c. Rerun kernels in simulation based backend for more precise results
d. Design choices on heterogeneous memory configurations

3. Demonstration on how this may be able to work…



Experiment 1: Transformer on NVIDIA GPU
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- Workload: Simple word prediction model inference
- Two transformer layers with two attention heads each
- 13 million parameters

- Backend: Physical NVIDIA Hopper H100 GPU
- Custom profiling execution with NVBit and NVIDIA Nsight Compute
- Approximate per-kernel data lifetimes and R/W frequencies

- Frontend: per-kernel visualizations
- Cache utilization: % of cache lines used by data in the kernel
- L1/L2 read/write frequencies
- L1/L2 lifetimes and required refreshes (based on 77 µs retention time from 

Giterman et al. (2020)’s CMOS gain cells)



Experiment 1 L2 Results
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Retention time reference:  R. Giterman, A. Shalom, A. Burg, A. Fish, and A. Teman, “A 1-Mbit Fully Logic-Compatible 3T Gain-Cell Embedded DRAM in 16-nm 
FinFET,” IEEE Solid-State Circuits Letters, vol. 3, pp. 110–113, 2020, doi: 10.1109/LSSC.2020.3006496.

https://doi.org/10.1109/LSSC.2020.3006496


Experiment 2: PolyBench on GPGPU-Sim
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- Workload: benchmarks consisting of 
single-kernel test programs

- 2D convolution kernel, 3D convolution 
kernel, GEMM kernel

- Backend: Accel-Sim and GPGPU-Sim
- Modded simulator of NVIDIA GPUs
- Captures cycle-accurate cache access 

information for each instruction

- Frontend: per-address visualizations
- L1 and L2 lifetime distributions for each 

cache line



Execution Results – 3D Convolution
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Next Steps
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Next Steps for Proof-of-Concept Design
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- Implement more HW backends (e.g., 
systolic array, dataflow accelerators)

- Frontend analytical models
- Goal: build a proof of concept AI 

accelerator chip using gain cells as 
primary on-chip, short term memory

- 3x cell density, <0.3x leakage power
- First in a series of SW tools for retention 

aware compilation suite



Rounding Out Our Vision
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Rounding Out Our Vision
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Thank You!
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