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Memory Consistency Model (MCM) defines the ordering and visibility
of shared memory accesses on a multiprocessor
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Memory Consistency Model (MCM) defines the ordering and visibility
of shared memory accesses on a multiprocessor

data = 0, flag = ©

Co c1
@ ST [data] 1 QLD [flag] 1
@D sST [flag] 1 Q)LD [data] ©

(.
3 CLO ) CLj )

?

Homogeneous Shared Memory Homogeneous Shared Memory
\& 2\ 2/

A z
oo - ©

Stanford University




Challenge: How do we ensure that microarchitecture correctly
implements its ISA MCM?
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Challenge: How do we ensure that microarchitecture correctly
implements its ISA MCM?
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Challenge: How do we ensure that microarchitecture correctly
implements its ISA MCM?

High-Level Language

Compiler OS

Architecture (ISA)

State-of-the-art top-down approach:
Manually encode formal MCM properties,
map down to RTL signals, and evaluate with
model checkers to get bounded proofs.

RTL (e.g., SystemVerilog)
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The Check Tools Automate Formal Verification of Hardware Memory
Model Implementations By Analyzing Abstract Model of Hardware

PipeProof [MICRO’18] <

RTLCheck [MICRO’17] ™
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High-Level Language

Compiler OS

Architecture (ISA)
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>
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Abstract Microarchitectural
Model: uSPEC Model

<

J

' )

RTL (e.g., SystemVerilog)

—

__ TriCheck [ASPLOS’17]
COATCheck [ASPLOS’16]

T

— PipeCheck [MICRO’14]

CCICheck [MICRO’15]

Omit details not relevant for the verification task



Axiomatic Microarchitectural Models Enable Formal Analysis

[Lustig+, ASPLOS’16]

(Axiom Ld exe path:

forall microops 1i,

IsAnyRead 1 =

AddEdges [((i, IF), (i, DX));
((i, DX), (i, RdMm));

((i, RdMm), (i, L1%$));

((i, L1%), (i, WB));] \/
AddEdges [((i, IF), (i, DX));
((i, DX), (i, WB));]

k// Other axioms... y

\

Y

First order logic axiomatic model of a

microarchitecture = a set of invariants

upheld by the microarchitecture:

« Omits combinational logic details

* Retains state updates and
ordering details

J
I
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High-Level Language

D

4

Formal Hardware Verification
with the Check Tools

<

Abstract Microarchitectural
Model: uSPEC Model

¢

1

RTL (e.g., SystemVerilog)

> TriCheck [ASPLOS’17]

COATCheck [ASPLOS’16]

T

— PipeCheck [MICRO’14]
CCICheck [MICRO’15]




Verification Challenge: How to Verify that a ygSPEC Accurately

Represents a SystemVerilog Microarchitecture

(Axiom Ld exe path:

forall microops 1i,
IsAnyRead i =

AddEdges [((i, IF), (i, DX));

VS Handwritten

((i, L1$), (i, WB));] \/
AddEdges [((i, IF), (i, DX));
((i, DX), (i, WB));]
\// Other axioms...

J

Problem: Does uSPEC
accurately represent the RTL?

Stanford University

USPEC looks quite different
from SystemVerilog!

\

Formal Hardware Verification
with the Check Tools

b,

Abstract Microarchitectural

Model: uSPEC Model

HSPEC-RTL
Verification Gap

RTL (e.g., SystemVerilog)

(giways @(posedge clk) begin
if (!rst_n) begin

L el A =

atdal)

QDeS|gner Inspectlon

id ex vld <= if_ex_vld;

=

I0 Op <= 1IT_0p,




Roadmap Toward Automatic Synthesis of Verified uSPEC

* RTL2uSPEC: Synthesizing uSPEC model from Simple Processor RTL Designs

* RTL2MuPATH: Synthesizing (“Uncovering”) All yPATHSs per Instruction from
Advanced SystemVerilog Processors

* Next Steps: Support synthesis of u.SPEC axioms for coherence protocol and
complex data dependencies in complex processors

Toward automatic synthesis of UYSPEC model for complex multiprocessors

Stanford University
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Roadmap Toward Automatic Synthesis of Verified uSPEC

* RTL2uSPEC: Synthesizing uSPEC model from Simple Processor RTL Designs

Stanford University
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Microarchitectural Happens-Before (UHB) Analysis Reasons About

Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

wden on SC]

co 1
(i0) ST [data] 1 (i2) LD [flag] 1 —
(i1) ST [flag] 1 (i3) LD [data] ©

IFIHIIFINLIIFL L LIF
DX IDX]| |DX]|]|DX

WBJ||[WB]||{WB]|||WB

MSPEC Model

arbiter

IF

DX

mem_IWB

regfile WB

phb graph

i@

co

PO

il

i2

C1

PO

i3

mem
RISC-V multi-V-scale / |!MmPlement Sequentia
Consistency (SC)?

J
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Check Tools: searches all ways
program executes on hardware

J.




Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

4

co

Program Order (PO)

Co
[(i0) sT [data] 1]

Stanford University
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Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

IF
IF mem_WB
WB regfile WB

mem
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Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

IF

O

[(i0) sT [data] 1]

/uhb Node: A set of stateup%

performed by a dynamic instruction
(column) to a set of hardware state
elements (row) during its execution

mem \°" the microarchitecture. )

WB
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Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

io il

x O=0

phb Edge: Happens-before
relationship between nodes.

Stanford University
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Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

ie
co IF
(i1) ST [flag] 1
DX
IF mem_WB

DX
WB /M
(Case 1 of yhb Edge: Localized to
an instruction to describe a
particular microarchitectural
\execution path of an instruction. Yy

mem
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Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

Cco
io il
Cco
(i@) ST [data] 1

(i1) ST [flag] 1 wa

DX (Case 2 of yhb Edge: Serialization
due to contention for shared

kresources Y

Stanford University 18



Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

Co Cl
il i2
Cco Cl
(i2) LD [flag] 1
(i1) ST [flag] 1

(Case 3 of phb Edge: T

Communication via shared

\resou Fces )

Stanford University 19



Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

(i@) ST [data] 1
(i1) ST [flag] 1

Co

[ Is illegal outcomep\ossﬁle?_]

C1 -
(i2) LD [flag]| 1
(i3) LD [data]| o

IF

DX

mem_IWB

regfile WB

co C1
i@ il i2 i3
PO PO

N

IF||[|TF[I[|IFI|||TIF
Sl ox1l il ox HSPEC Model
wa| || [we]|| [we]||[ws
| aLbitér |
mclem
RISC-V multi-V-scale \

Stanford University

SAT or SMT solver can answer with easy check!
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Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

[ Is illegal outcomep\ossﬁle?_] co C1
i0 il i2 i3

Co C1 - e PO PO
(i@) ST [data] 1 (i2) LD [flag]| 1 |—
(i1) ST [flag] 1 (i3) LD [data]|® ox
—)
IFIHIIFIIFLIIF mem_WB
Sl Ex1 1 ox1 1| ox MSPEC Model
we] || [we]|| [wB] || [wB regfile WB /\
arbiter SAT or SMT solver can answer with easy check!
mem - Cyclic: Not observable

RISC-V multi-V-scale

Stanford University

S Acyclic: Observable

21



Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

co C1
io il i2 i3
IF

Axiom St _exe_ path:
forall microops i

Microarchitectural
Execution Path (UPATH) DX
Axioms Per-Instruction

), mem_WB
HSPEC Model

[Specifies the space of all possible phb graphs ]

| // Other axioms...

Stanford University



RTL2uSPEC: Synthesizing ySPEC from Processor Design

IF _ DX _ WB
sw_in WB
I 3
. [))( >
‘PC ) inst_ _I., mem
u »| [ _wdata
a 71 a

SystemVerilog design

J

—

CLK
A $dff Ql
sw in WB WEN
o WA | $mem |RD
C:K safe| A $dff| Q WD
- wdata mem
inst_DX

#1 Netlist a.k.a. control- and data-flow graph

\ £

PO: ass

Pl: ass
P2: ass
P3: ass
AQ: assert ('PCR_<stage(s)> == pc0 |-—> s ==

E5iod

(first
“PCR 0
(first

|-> ( (CPCR_O

pcl |—>
(10) == op);

!= pcO [*0:$]1) ##1
== pcO [*1:$]) ##1 ("PCR O

TIFR == i0);

1= pc0) ));
|-> s_eventually( PCR_<stage(s)> == pc0));
(PCR_O0 ==
(opcode
$past(s));

« BEEEBEBE

#3 SVA Embedding w/ Templates
assert (property)

’

=

#4 JasperGold

Stanford University

épen—source RISC-V multi-V-scale case\
study [Hsiao+, MICRO’21]:

¥

Vj |: * 6.84 mins serial proof time w/ 120

¥

#5 Comprehensive set of
HSPEC axioms

SVA properties evaluated
e >780x performance improvement
\ over prior work [Manerakr+, MICRO’17]/

23




Roadmap Toward Automatic Synthesis of Verified uSPEC

* RTL2MuPATH: Synthesizing (“Uncovering”) All yPATHSs per Instruction from
Advanced SystemVerilog Processors

Stanford University
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Single Microarchitectural Execution Path (UPATH) Assumption

Axiom St _exe_ path:
forall microops i

Microarchitectural
Execution Path (WPATH)

Axioms Per-Instruction

T7 coc

| // Other axioms...

J

/pPATH: Models a séfic\

execution of a specific
dynamic instructionon a
specific microarchitecture
as a directed yHB graph
\[Lustig+, MICRO’14].

r

Formal Hardware Verification

\

with the Check Tools

\

J

Stanford University

.

Abstract Microarchitectural
Model: yYSPEC Model 4

J

ALl LD pPATHSs:

LD LD
IF
DX
regfile_WB
RdMm
IF ==
DX L1$ )

RTL2uSPEC cannot recognize more
than one yPATH per instruction

RTL (e.g., SystemVerilog) ]_\

mem
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Overview of RTL2ZMuPATH: Multi-uPATH Synthesis from RTL

[ SystemVerilog ]_
Processor Design RTL2MuPATH

[ Instruction Encodings ]—

[ Designh Metadata ]—

Stanford University




Overview of RTL2ZMuPATH: Multi-uPATH Synthesis from RTL

visits mulU by putting its PC value the
the activei mulU’s MUL’s own (N) operands

ALU
LSU

Multiplication Unit (mulU)

= return fast_path # 1 cyc
0x42 MUL |3X WBi returnslow_path | #3 cyc,

L1$ Zero-Skip Optimization

mem

[ SystemVerilog ]_
Processor Design RTL2MuPATH

[ Instruction Encodings ]—

[ Designh Metadata ]—

Stanford University 27




Overview of RTL2ZMuPATH: Multi-uPATH Synthesis from RTL

ALU
LSU .
'MUL_mulU(MULNi0): )
'I,-\_' if (i0.0p0==0 |
Multiplication Unit (mull) 10.0p1 == 0):
— = return fast_path # 1 cyc
IF [ DX WB || return slow_path #3 cyc,
L1$ Zero-Skip Optimization
mem -~
[ SystemVerilog ]_ ? Netlist Analysis assert (property)
Processor Design & | SystemVerilog Assertion (SVA)
[ ]_ RTL2MuPATH g _‘ci Generation from Templates
Instruction Encodings R
Model Checkin
. & /\

[ Designh Metadata ]—

Stanford University

prove assert (property)
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Overview of RTL2MuPATH: Multi-uPATH Synthlﬁis from RTL
2\ AlLADD pPATHSs

Multiplication Unit (mulU) "

éycle-accurate
HPATHs (new!):
Nodes: State

Edges: 1-cycle

updates inacycle

> ALl MUL pPATHSs
MUL MUL

'MUL_mulU(

10.0p1 ==

if (i0.0p0 ==

return fast_path # 1 cyc

MULNiO): )

O]
):

Jeturnislow_path | # 3 cyc

- IF
K happens—beforeJID 8

Stanford University

cyc 1
cyc 2

cyc 3

\
N\

Zero-Skip Optimization
m Complete set of yPATHs

for each instruction

29



Conceptualizing Nodes in a yPATH: A Key Challenge to Automated

UPATH Discovery with RTL2ZMuPATH
ALU || op0 J
LSU || op1 ( MUL\
pc_i IF
Multiplication Unit (mull) " 1D
\? DX W acc(1)
Li$ acc(2)
mem acc(3)

SystemVerilog WB
Processor Design . )
assert (UPATH) ,\/4{ All reachable

Asks a model checker J - UL [PETIe

whether pPATH is reachable > x Discard unreachable MUL pPATHs
Stanford University by MUL in any execution. 30




Conceptualizing Nodes in a pPATH: A Key Challenge to Automated
HPATH Discovery with RTLZMUPATZEMW instructionq

colors) in-flight a
RISC-V CVA6 Core [Zaru b:ilz-)l(-é VLSI’19]

How to recognize a h

the same time! node? Requires detecting

Frontend ID commit/ :
i S tb cm_stb a a
issue — o T e e PEY 4 MUL & attrlpqtlpg state.update
e [ st unit b= [ 7q unit y ~\to specific instructions
regfile I """ IF
oC [ 1d_buff J«—
Mux ID
scoreboard
isud |...|pc|xpt|vld 1 aCC(1)
T acc(2)
' acc(3)
SystemVerilog ] WB
g J

Processor Design

assert (UPATH) _ y\/A{ ﬁbrfaﬂ;\?-ﬁe
Asks a model checker J H S

whether pPATH is reachable > X Discard unreachable MUL pPATHs
Stanford University by MUL in any execution. 31




Our Solution: Expressing Nodes in uPATHs using Micro-op Finite
State Machines (UFSMs) L 7

ALU
LSU

State variables,

| encoding a concrete
[ e

MultiplicatiZnit (mulUl) | (_/\
0x42 MUL An instruction occupies/ Micro-op Finite State Machine (UFSM): _O?
TF X | WH Visits a yFSM by putting . <IIR, stateVars> tuple ,

L1$ ? ““iq‘fe identifier’ (e.g., * Orchestrate instruction execution from
. \ts PC) in the pFSM's IR. fetch until possibly after commit

mem ( Control instruction state updates per—cycle)

SystemVerilog
Processor Design

\

Stanford University 32



Our Solution: Expressing Nodes in uPATHs using Micro-op Finite
State Machines (UFSMs)

ALU || op0—
o SR

pe_ 0x42 A
Multiplication Unit (mulU)

MUL

= FC
Updates: N/A D () ‘ ——
foﬁ acc(1 [‘] sMUL(1 {ctrl =sMUL J

Updates: acc, A uHB node € A yFSM in a non- |dle
state and occupied by an mstructlon

MUL updates acc J

Stanford Universf\yhen ctrl == sMUL 33




Our Solution: Expressing Nodes in uPATHs using Micro-op Finite
State Machines (UFSMs)

ALU || op0—
o SR

pe_ 0x42 A
Multiplication Unit (mulU)

&= FO
Updates: N/A D () - s
foﬁ acc(1 [‘] sMUL(1) {ctrl =sMUL J

Updates: acc, : Performlng locatlon (PL): ]

MUL updates acc Concrete non-idle state of a yFSM
Stanford Universf\yhen ctrl == SMULJ 34




RTL2MuPATH: Synthesizing uPATHs from Processor Design

= ==

pcr| T SMUL D

G SGrme
Multiplication Unit (mulU)

IF|DX WB”

L15

mem

[ Design Metadata ] RTL2MpPATH
(

including pFSMs)




RTL2MuPATH: Synthesizing uPATHs from Processor Design

= ==

pcr| T SMUL D

G SGrme
Multiplication Unit (mulU)

IF D_X WB”

L1$
mem

SystemVerilog
Processor Design
[ Instruction Encodings ]—

Design Metadata
(including pFSMs)

Step 1: Synthesizing sets of nodes
RTL2MpuPATH that can form reachable yPATHs




RTL2MuPATH: Synthesizing yPATHs from Processor Design

ALU O Step 1: Synthesizing sets of nodes
S SIDLE that can form reachable pPATHs
. -y
Multiplication Unit (mulU) Ask a model checker...| U
MUL MUL MUL MUL Can any instruction
LF DX WB” visit <PL>?
L1$ ir O O
mém n PLs sMUL O O O Can <inst> visit <PL>?
SystemVeri[og SFIN O O l Can <inst> visit <PL1>
Processor Design WB 9 O C)J without visiting <PL2>?
“h Can <inst> visit both
[ Instruction Encodings |+ Worst case: 2 sets (n > 40) <PL1> and <PL2>?
. - Step 1A: Enumerate all possible Step 1B: SVA property-driven
Design Metadata PLs (concrete pFSM states) UPATH pruning
(including pFSMs) with netlist analysis 3




RTL2MuPATH: Synthesizing uPATHs from Processor Design

ALU
N

’»
] (SR

Multiplication Unit (mulU)

SIDLE

TF[DX[WB]]
L15
mem

n

|

SystemVerilog
Processor Design

]_

[ Instruction Encodings ]—

g

Design Metadata
including pFSMs)

IF
PLs < sMUL

Step 1: Synthesizing sets of nodes

that can form reachable pPATHs Details in the

Step 2: Synthesizing full pRAFsdnec paper [Hsiao,

gsete <11 MICRO24]!
sMUL, WB> lbut no

others (e.g., N)?
X WV K

MUL MUL

IF IF O

MUL MUL
SFIN ‘ ” Q‘s O

]_

pFSM states) with
netlist analysis

<FIN <EIN O Candidate
WB ... sets of nodes
ws O ws O (10s to ~1k)
Step 1A: Enumerate all Step 1B: SVA Step 1C: Embed node
=) possible PLs (concrete  property-driven sets as SVA properties

MPATH pruning to deduce reachability
38



CVAG6 Core and Cache Case Study [Hsiao+, MICRO’24]

= RISC-V CVA6
=  64-bit, 6-stage, single-issue core

=  Speculation and limited out-of-
order write-back with diverse
functional units (ALU, LSU, Mul/Div,
CSR buffer)

= 72 instructionsin RV64l base ISA+ M
extension (RV64IM)

=  Synthesize per-instruction yPATH
axioms from Core and Data Cache
respectively

Stanford University

Frontend

|13

PC T

Mux

ID

|IstQI

BTB/
PHT/

RAS

i

.....

commit/ EXE
. - 1sq sp stb cm_stb
issue =
> | [ | | > | le—
—] @1 )
—>| 1d_op I
; »| mem
fil 3
[ 1d buff Je—T
branch ufit p—
scoreboard
isud | . | pc |xpt |v1d
= <

.....

CVAG Core [Zaruba+, VLSI’19]
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CVAG Core: Results

Complexity statistics: 8,577 LoC (SystemVerilog); after
elaboration: 22,138 wires, 19,575 standard cells, 482
registers (11,985 D flip-flop bits), 3 memories.

124,459 properties

Average ~4 min per property

~16% undetermined under timeout of 30 minutes

CVAG6 Cache: Preliminary Results

Complexity statistics: 2,279 LoC (SystemVerilog); 4-
way, 128B (scaled down from 32 KB), write-through,
coalescing write-buffer

4,178 properties

Average < 3 sec per property
All completed

Benefits of
modularization

Stanford University

IF

ID(1)
ID(1)
issue
scblss
scbFin
scbCmt

IF

ID

issue
LSQ(1)
LsQ(l)
IdStall(1)
IdStall(l)
IdFin
scblss(1)
scblss(1)
scbFin
scbCmt

memReq
\

ADD

ADD

comSTB
wBTn(1)
Mem(1)
wBVd(1)

wrS0
wRTg(1)
wBTn(2)
Mem(2)
wBVd(2)
wRTg(2)
wBTn(3)
Mem(3)
wBVd(3)

ST

ST

)

https://github.com/yaohsiaopid/SynthLC
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Roadmap Toward Automatic Synthesis of Verified uSPEC

* Next Steps: Support synthesis of uUSPEC axioms for coherence protocol
and complex data dependencies in complex processors

Stanford University
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Challenge #1: Synthesizing coherence protocol related axioms

Co Cl
(i@) ST [data] 1 (i2) LD [data] 2
(i1) ST [data] 2 (i3) LD [data] 1
(10) (i1) (12) (13)

Cache coherence protocols ensure

: . IF
that multiple cached copies of an
address are kept up-to-date DX
V'S .
tF] || [zF] || [zF]|| [zF regfile_W8
I I I I ’
DX]|||ox]{|[pX]|] DX RdMm ) ey
1 1 1 1 ”¢ /, P
N:B W:B W:B W:B L1 $ - ). ,z'
L |[caglfLaglfeag] 0202020200000 TTTTmmm=ee- ol ’)
I I I I P
directory
mem

Stanford University
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Challenge #2: axioms synthesis regarding complex dataflow
dependencies

co C1
il i2
co (o1
(i2) LD [flag] 1
(i1) ST [flag] 1
IF|||[ZF]|| [ZF]||[ZF mem_WB
D:X DX]|| [OX]|[[DX
W.B N.B W.B W.B .\
arbiter @ingle-data—source assumption: Cannot recognize when\
em data can be sourced from more than one place (e.g,

RISC-V multi-V-scale

Stanford University

cache, store buffer, or more)— Incompleteness in

\USPEC axioms synthesis Y,
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Takeaways

PipeCheck [MICRO’14] (- Coherence A
e | — f ifi . ) |- Data-dependencies axioms
CCICheck [MICRO’15] Formal Hardware Verification P

COATCheck [ASPLOS™16] \ with the Check Tools ) - Non-con.sec.utive revisits
TriCheck [ASPLOS™1 7] - Modularization

>
Abstract Microarchitectural

RTLCheck [MICRO*17] Model: uSPEC Model R/ /
PipeProof [MICRO’18] . g -
CheckMate [MICRO’18] — t ; Narrowed Verification Gap!

4 CLO N\ CLj I d

All uPATHs Per

i i Instruction

erito
Homogeneous Shared Memor
\ & / ﬁr .

@

Homogeneous Shared Memory

2 Y V4 )
[[ ][ ] J [ Complex ]

| Processor Design
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Stanford University

Thank you!
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