
Synthesizing High Level Models from RTL for Efficient
Verification of Memory Model Implementations

Yao Hsiao, Caroline Trippel

Jan 10, 2025

Memory Consistency Model (MCM) defines the ordering and visibility
of shared memory accesses on a multiprocessor

data = 0, flag = 0

C0

ST [data] 1

ST [flag] 1

C1

LD [flag] 1

LD [data] 0

✓

Sequential Consistency (SC)

0
1

2
3

1 2 3 0

Can this execution order of
happen ?

MCMs determine legal
outcomes of a parallel
program on a machine

2

C1 Ci

Homogeneous Shared Memory

…C0

Heterogeneous Shared MemoryM0 M1 MjM2 …

CLj

C1 Ci

Homogeneous Shared Memory

…C0

Memory Consistency Model (MCM) defines the ordering and visibility
of shared memory accesses on a multiprocessor

data = 0, flag = 0

C0

ST [data] 1

ST [flag] 1

C1

LD [flag] 1

LD [data] 0

0
1

2
3

3

CL0

C1 Ci

Homogeneous Shared Memory

…C0

Challenge: How do we ensure that microarchitecture correctly
implements its ISA MCM?

4

Architecture (ISA)

High-Level Language

Compiler OS

RTL (e.g., SystemVerilog)

CL0

C1 Ci

Homogeneous Shared Memory

…C0

M0 M1 MjM2 …

CLj

C1 Ci

Homogeneous Shared Memory

…C0

Challenge: How do we ensure that microarchitecture correctly
implements its ISA MCM?

5

Architecture (ISA)

High-Level Language

Compiler OS

RTL (e.g., SystemVerilog)

CL0

C1 Ci

Homogeneous Shared Memory

…C0

M0 M1 MjM2 …

CLj

C1 Ci

Homogeneous Shared Memory

…C0

6

Challenge: How do we ensure that microarchitecture correctly
implements its ISA MCM?

Architecture (ISA)

High-Level Language

Compiler OS

RTL (e.g., SystemVerilog)

State-of-the-art top-down approach:
Manually encode formal MCM properties,
map down to RTL signals, and evaluate with
model checkers to get bounded proofs.

7

The Check Tools Automate Formal Verification of Hardware Memory
Model Implementations By Analyzing Abstract Model of Hardware

Architecture (ISA)

High-Level Language

Compiler OS

RTL (e.g., SystemVerilog)

Omit details not relevant for the verification task

Abstract Microarchitectural
Model

PipeCheck [MICRO’14]
CCICheck [MICRO’15]

COATCheck [ASPLOS’16]

TriCheck [ASPLOS’17]

RTLCheck [MICRO’17]

PipeProof [MICRO’18]

Abstract Microarchitectural
Model: μSPEC Model

TriCheck [ASPLOS’17]

COATCheck [ASPLOS’16]

Architecture (ISA)

High-Level Language

Compiler OS

RTLCheck [MICRO’17]

PipeProof [MICRO’18]

CheckMate [MICRO’18]

PipeCheck [MICRO’14]
CCICheck [MICRO’15]

8

Formal Hardware Verification
with the Check Tools

Axiom Ld_exe_path:

forall microops i,
IsAnyRead i ⇒

AddEdges [((i, IF), (i, DX));

((i, DX), (i, RdMm));
((i, RdMm), (i, L1$));

((i, L1$), (i, WB));] \/

AddEdges [((i, IF), (i, DX));
((i, DX), (i, WB));]

// Other axioms...

First order logic axiomatic model of a
microarchitecture = a set of invariants
upheld by the microarchitecture:
• Omits combinational logic details
• Retains state updates and

ordering details

Axiomatic Microarchitectural Models Enable Formal Analysis

RTL (e.g., SystemVerilog)

[Lustig+, ASPLOS’16]

Abstract Microarchitectural
Model: μSPEC Model

Axiom Ld_exe_path:

forall microops i,
IsAnyRead i ⇒

AddEdges [((i, IF), (i, DX));

((i, DX), (i, RdMm));
((i, RdMm), (i, L1$));

((i, L1$), (i, WB));] \/

AddEdges [((i, IF), (i, DX));
((i, DX), (i, WB));]

// Other axioms...

RTL (e.g., SystemVerilog)

Manual Translation....
μSPEC-RTL

Verification Gap

9

Verification Challenge: How to Verify that a μSPEC Accurately
Represents a SystemVerilog Microarchitecture

Abstract Microarchitectural
Model: μSPEC Model

Formal Hardware Verification
with the Check Tools

always @(posedge clk) begin

 if (!rst_n) begin
 ...

 end else if (if_vld) begin

 end
 id_op <= if_op;

 id_ex_vld <= if_ex_vld;

 ...

μSPEC looks quite different
from SystemVerilog!

Handwritten

Problem: Does μSPEC
accurately represent the RTL?

Designer Inspection

• Background: The Microarchitecture-μSPEC Model Verification Challenge

• RTL2μSPEC: Synthesizing μSPEC model from Simple Processor RTL Designs

• RTL2MμPATH: Synthesizing (“Uncovering”) All μPATHs per Instruction from
Advanced SystemVerilog Processors

• Next Steps: Support synthesis of μSPEC axioms for coherence protocol and
complex data dependencies in complex processors

Roadmap Toward Automatic Synthesis of Verified μSPEC

10

Toward automatic synthesis of μSPEC model for complex multiprocessors

11

• Background: The Microarchitecture-μSPEC Model Verification Challenge

• RTL2μSPEC: Synthesizing μSPEC model from Simple Processor RTL Designs

• RTL2MμPATH: Synthesizing (“Uncovering”) All μPATHs per Instruction from
Advanced SystemVerilog Processors

• Next Steps: Support synthesis of μSPEC axioms for coherence protocol and
complex data dependencies in complex processors

Roadmap Toward Automatic Synthesis of Verified μSPEC

12

Microarchitectural Happens-Before (μHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

μhb graph

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale Implement Sequential
Consistency (SC)?

Check Tools: searches all ways
program executes on hardware

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Forbidden on SC

μhb graph

13

Microarchitectural Happens-Before (μHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale Implement Sequential
Consistency (SC)?

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Program Order (PO)
Forbidden on SC

μhb graph

14

Microarchitectural Happens-Before (μHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale Implement Sequential
Consistency (SC)?

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Forbidden on SC

μhb graph

15

Microarchitectural Happens-Before (μHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale Implement Sequential
Consistency (SC)?

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Forbidden on SC

μhb Node: A set of state updates
performed by a dynamic instruction
(column) to a set of hardware state
elements (row) during its execution
on the microarchitecture.

μhb graph

16

Microarchitectural Happens-Before (μHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale Implement Sequential
Consistency (SC)?

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Forbidden on SC

μhb Edge: Happens-before
relationship between nodes.

μhb graph

17

Microarchitectural Happens-Before (μHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale Implement Sequential
Consistency (SC)?

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Forbidden on SC

Case 1 of μhb Edge: Localized to
an instruction to describe a
particular microarchitectural
execution path of an instruction.

μhb graph

18

Microarchitectural Happens-Before (μHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale Implement Sequential
Consistency (SC)?

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Forbidden on SC

Case 2 of μhb Edge: Serialization
due to contention for shared
resources

μhb graph

19

Microarchitectural Happens-Before (μHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale Implement Sequential
Consistency (SC)?

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Forbidden on SC

Case 3 of μhb Edge:
Communication via shared
resources

20

μhb graph

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale

SAT or SMT solver can answer with easy check!

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Microarchitectural Happens-Before (μHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

Is illegal outcome possible?

21

μhb graph

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale

SAT or SMT solver can answer with easy check!
- Cyclic: Not observable
- Acyclic: Observable

μSPEC Model

Microarchitectural Happens-Before (μHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Is illegal outcome possible?

Is illegal outcome possible?

22

Microarchitectural Happens-Before (μHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

μhb graph

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale Implement Sequential
Consistency (SC)?

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Specifies the space of all possible μhb graphs

μSPEC Model

Axiom St_exe_path:

forall microops i,
IsAnyWrite i ⇒

AddEdges [((i, IF), (i, DX));

((i, DX), (i, mem_WB))].
Axiom Ld_exe_path:

// ...

// Other axioms...

PO
IF

DX

C0

i0 i1

mem_WB

Microarchitectural
Execution Path (μPATH)
Axioms Per-Instruction

i2

C1

i3

assert (property)

23

RTL2μSPEC: Synthesizing μSPEC from Processor Design

inst_DX

sw_in_WB

CLK

A
$dff Q

CLK

A
$dff Q

WEN
WA
WD

$mem RD

memwdata

CLK

A
$dff Q

#1 Netlist a.k.a. control- and data-flow graph

inst_DX

DX WBIF

wawen

wd r
d

ra

sw_in_WB

wdata
PC
Mux

wenwd
regfi
le

mem

SystemVerilog design

#3 SVA Embedding w/ Templates

#4 JasperGold

––––
––––

––––
––––

––––
––––

#2 Over-approximation of all possible
μSPEC axioms

––––
––––
✓––––

––––
✓

#5 Comprehensive set of
μSPEC axioms

…––––
––––
✓

Open-source RISC-V multi-V-scale case
study [Hsiao+, MICRO’21]:
• 6.84 mins serial proof time w/ 120

SVA properties evaluated
• > 780x performance improvement

over prior work [Manerakr+, MICRO’17]

24

Roadmap Toward Automatic Synthesis of Verified μSPEC

• Background: The Microarchitecture-μSPEC Model Verification Challenge

• RTL2μSPEC: Synthesizing μSPEC model from Simple Processor RTL Designs

• RTL2MμPATH: Synthesizing (“Uncovering”) All μPATHs per Instruction from
Advanced SystemVerilog Processors

• Next Steps: Support synthesis of μSPEC axioms for coherence protocol and
complex data dependencies in complex processors

25

Single Microarchitectural Execution Path (μPATH) Assumption

μPATH: Models a specific
execution of a specific
dynamic instruction on a
specific microarchitecture
as a directed μHB graph
[Lustig+, MICRO’14].

Axiom St_exe_path:

forall microops i,
IsAnyWrite i ⇒

AddEdges [((i, IF), (i, DX));

((i, DX), (i, mem_WB))].
Axiom Ld_exe_path:

// ...

// Other axioms...

RTL (e.g., SystemVerilog)

Abstract Microarchitectural
Model: μSPEC Model

Formal Hardware Verification
with the Check Tools

Microarchitectural
Execution Path (μPATH)
Axioms Per-Instruction

L1$

mem

IF

DX

WB

LD

miss
μPATH

IF

DX

regfile_WB

RdMm

L1$

LD

All LD μPATHs:

hit
μPATH

RTL2μSPEC cannot recognize more
than one μPATH per instruction

26

RTL2MμPATH

SystemVerilog
Processor Design

Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL

Instruction Encodings

Design Metadata

27

Zero-Skip Optimization

Multiplication Unit (mulU)

RTL2MμPATH

SystemVerilog
Processor Design

Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL

L1$

mem

IF DX WB

ALU
LSU

....

op1

Instruction Encodings

Design Metadata

MUL_mulU(MULN i0):
 if (i0.op0 == 0 ||
 i0.op1 == 0):
 return fast_path # 1 cyc
return slow_path # 3 cyc

the active instruction
visits mulU by putting its PC value the
mulU’s PC Register (PCR)MUL’s own (N) operands

acc

ctrl

pc_i PCR

op0 == 0?
...

0x420x42 MUL

op0
op1

28

Zero-Skip Optimization

Multiplication Unit (mulU)

RTL2MμPATH

SystemVerilog
Processor Design

Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL

L1$

mem

IF DX WB

ALU
LSU

....

op1

Instruction Encodings

Design Metadata

MUL_mulU(MULN i0):
 if (i0.op0 == 0 ||
 i0.op1 == 0):
 return fast_path # 1 cyc
return slow_path # 3 cyc

acc

ctrl

pc_i PCR

op0 == 0?
...

Netlist Analysis

SystemVerilog Assertion (SVA)
Generation from Templates

Model Checking

assert (property)

prove assert (property)
Te

ch
ni

qu
es

29

Zero-Skip Optimization

Multiplication Unit (mulU)

RTL2MμPATH

SystemVerilog
Processor Design

Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL

L1$

mem

IF DX WB

ALU
LSU

....

op1

Instruction Encodings

Design Metadata

MUL_mulU(MULN i0):
 if (i0.op0 == 0 ||
 i0.op1 == 0):
 return fast_path # 1 cyc
return slow_path # 3 cyc

acc

ctrl

pc_i PCR

op0 == 0?
... All MUL μPATHs

IF

ID

acc(1)

acc(2)

acc(3)

WB

MUL
IF

ID

acc(1)

acc(2)

acc(3)

WB

MUL

...
cyc 1

cyc 2

cyc 3

cyc 1

All ADD μPATHs
...

Complete set of μPATHs
for each instruction

Cycle-accurate
μPATHs (new!):
• Nodes: State

updates in a cycle
• Edges: 1-cycle

happens-before

acc(1)

acc(3)

WB

IF

ID

acc(2)

MUL

acc(1)

acc(3)

WB

IF

ID

acc(2)

MUL

30

Conceptualizing Nodes in a μPATH: A Key Challenge to Automated
μPATH Discovery with RTL2MμPATH

All reachable
MUL μPATHs

Asks a model checker
whether μPATH is reachable
by MUL in any execution.

...

Multiplication Unit (mulU)

L1$

mem

IF DX WB

ALU
LSU

....

op1

acc

ctrl

pc_i PCR

op0 == 0?
...

RTL2MμPATH
SystemVerilog

Processor Design

Instruction Encodings

Design Metadata

assert (μPATH)

Discard unreachable MUL μPATHs

acc(1)

acc(3)

WB

IF

ID

acc(2)

MUL

acc(1)

acc(3)

WB

IF

ID

acc(2)

MUL

31

Conceptualizing Nodes in a μPATH: A Key Challenge to Automated
μPATH Discovery with RTL2MμPATH

All reachable
MUL μPATHs

Asks a model checker
whether μPATH is reachable
by MUL in any execution.

...

Multiplication Unit (mulU)

L1$

mem

IF DX WB

ALU
LSU

....

op1

acc

ctrl

pc_i PCR

op0 == 0?
...

RTL2MμPATH
SystemVerilog

Processor Design

Instruction Encodings

Design Metadata

assert (μPATH)

Discard unreachable MUL μPATHs

RISC-V CVA6 Core [Zaruba+, VLSI’19]

How to recognize a
node? Requires detecting
& attributing state update
to specific instructions

Many instructions
(colors) in-flight at
the same time!

32

Our Solution: Expressing Nodes in μPATHs using Micro-op Finite
State Machines (μFSMs)

L1$

mem

IF DX WB

SystemVerilog
Processor Design

Multiplication Unit (mulU)

ALU
LSU

....

op1

acc

ctrl

pc_i PCR

op0 == 0?
...

Micro-op Finite State Machine (μFSM):
• <IIR, stateVars> tuple
• Orchestrate instruction execution from

fetch until possibly after commit
• Control instruction state updates per-cycle

ctrl

PCR

0x420x42 MUL

Instruction-identifying register (IIR),
e.g., register holding PC value.

stateVarsIIR

An instruction occupies/
visits a μFSM by putting
a unique identifier (e.g.,
its PC) in the μFSM’s IIR.

State variables,
encoding a concrete
FSM state

L1$

mem

IF DX WB

SystemVerilog
Processor Design

sMUL

33

Our Solution: Expressing Nodes in μPATHs using Micro-op Finite
State Machines (μFSMs)

Multiplication Unit (mulU)

ALU
LSU

....

op1

acc

ctrl

pc_i PCR

op0 == 0?
...

sIDLE

sMUL

sFIN
Updates: acc, ... Updates: acc, ..

Updates: N/A

acc(1)

IF

ID

MUL

...
sMUL(1)

IF

ID

MUL

Micro-op Finite State Machine (μFSM):
• <IIR, stateVars> tuple
• Orchestrate instruction execution from

fetch until possibly after commit
• Control instruction state updates per-cycle

MUL updates acc
when ctrl == sMUL

sMUL
PCR == 0x42 &&
ctrl == sMUL

ctrl

PCR
0x42

stateVarsIIR

A μHB node A μFSM in a non-idle
state and occupied by an instruction

L1$

mem

IF DX WB

SystemVerilog
Processor Design

sMUL

34

Our Solution: Expressing Nodes in μPATHs using Micro-op Finite
State Machines (μFSMs)

Multiplication Unit (mulU)

ALU
LSU

....

op1

acc

ctrl

pc_i PCR

op0 == 0?
...

sIDLE

sMUL

sFIN
Updates: acc, ... Updates: acc, ..

Updates: N/A

acc(1)

IF

ID

MUL

...
sMUL(1)

IF

ID

MUL

Micro-op Finite State Machine (μFSM):
• <IIR, stateVars> tuple
• Orchestrate instruction execution from

fetch until possibly after commit
• Control instruction state updates per-cycle

MUL updates acc
when ctrl == sMUL

sMUL
PCR == 0x42 &&
ctrl == sMUL

ctrl

PCR
0x42

stateVarsIIR

Performing location (PL):
Concrete non-idle state of a μFSM

35

RTL2MμPATH: Synthesizing μPATHs from Processor Design

Multiplication Unit (mulU)

ALU
LSU

....

ctrl

PCR

L1$
mem

 F DX WB

sIDLE

sMUL

sFIN

RTL2MμPATH

SystemVerilog
Processor Design

Instruction Encodings

Design Metadata
(including μFSMs)

36

RTL2MμPATH: Synthesizing μPATHs from Processor Design

Multiplication Unit (mulU)

ALU
LSU

....

ctrl

PCR

L1$
mem

IF DX WB

sIDLE

sFIN

Step 1: Synthesizing sets of nodes
that can form reachable μPATHs RTL2MμPATH

SystemVerilog
Processor Design

Instruction Encodings

Design Metadata
(including μFSMs)

37

RTL2MμPATH: Synthesizing μPATHs from Processor Design

Multiplication Unit (mulU)

ALU
LSU

....

ctrl

PCR

L1$

IF DX WB

sIDLE

sMUL

sFIN

Step 1A: Enumerate all possible
PLs (concrete μFSM states)

with netlist analysis

n PLs

Worst case: 2n sets (n > 40)

Can <inst> visit <PL>?

Step 1B: SVA property-driven
μPATH pruning

Can any instruction
visit <PL>?

Can <inst> visit <PL1>
without visiting <PL2>?

Can <inst> visit both
<PL1> and <PL2>?

IF

sMUL

sFIN

WB

MUL MUL MUL

...

MUL

...

Step 1: Synthesizing sets of nodes
that can form reachable μPATHs

SystemVerilog
Processor Design

Instruction Encodings

Design Metadata
(including μFSMs)

Ask a model checker…

38

RTL2MμPATH: Synthesizing μPATHs from Processor Design

Multiplication Unit (mulU)

ALU
LSU

....

ctrl

PCR

L1$
mem

IF DX WB

sIDLE

sFIN

Step 1A: Enumerate all
possible PLs (concrete

μFSM states) with
netlist analysis

n PLs

Step 1B: SVA
property-driven
μPATH pruning

IF

sMUL

sFIN

WB

Step 1: Synthesizing sets of nodes
that can form reachable μPATHs

SystemVerilog
Processor Design

Instruction Encodings

Design Metadata
(including μFSMs)

...
MUL

IF

sMUL

sFIN

WB

MUL
IF

sMUL

sFIN

WB

MUL

Candidate
sets of nodes
(10s to ~1k)

...

Step 1C: Embed node
sets as SVA properties
to deduce reachability

 < > < F,
 , W > b
 h (, F N)?

Ask a model checker…Step 2: Synthesizing full μPATHs by
adding edges to reachable node sets

Details in the
paper [Hsiao,
MICRO’24]!

▪ RISC-V CVA6

▪ 64-bit, 6-stage, single-issue core

▪ Speculation and limited out-of-
order write-back with diverse
functional units (ALU, LSU, Mul/Div,
CSR buffer)

▪ 72 instructions in RV64I base ISA + M
extension (RV64IM)

▪ Synthesize per-instruction μPATH
axioms from Core and Data Cache

respectively

39

CVA6 Core and Cache Case Study [Hsiao+, MICRO’24]

CVA6 Core [Zaruba+, VLSI’19]

CVA6 Core: Results

40

• Complexity statistics: 8,577 LoC (SystemVerilog); after
elaboration: 22,138 wires, 19,575 standard cells, 482
registers (11,985 D flip-flop bits), 3 memories.

• 124,459 properties
• Average ~4 min per property
• ~16% undetermined under timeout of 30 minutes

CVA6 Cache: Preliminary Results
• Complexity statistics: 2,279 LoC (SystemVerilog); 4-

way, 128B (scaled down from 32 KB), write-through,
coalescing write-buffer

• 4,178 properties
• Average < 3 sec per property
• All completed

Benefits of
modularization

https://github.com/yaohsiaopid/SynthLC

41

Roadmap Toward Automatic Synthesis of Verified μSPEC

• Background: The Microarchitecture-μSPEC Model Verification Challenge

• RTL2μSPEC: Synthesizing μSPEC model from Simple Processor RTL Designs

• RTL2MμPATH: Synthesizing (“Uncovering”) All μPATHs per Instruction from
Advanced SystemVerilog Processors

• Next Steps: Support synthesis of μSPEC axioms for coherence protocol
and complex data dependencies in complex processors

42

Challenge #1: Synthesizing coherence protocol related axioms

C0

(i0) ST [data] 1

(i1) ST [data] 2

C1

(i2) LD [data] 2

(i3) LD [data] 1

directory

mem

IF

DX

W

IF

DX

WB

IF

DX

WB

IF

 X

WB

L1$ L1$ L1$ L1$

Cache coherence protocols ensure
that multiple cached copies of an
address are kept up-to-date

IF

DX

regfile_WB

RdMm

L1$

(i0) (i1) (i2) (i3)

μhb graph

43

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

Implement Sequential
Consistency (SC)?

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Forbidden on SC

For μhb edges instantiated for
communication via shared
resources:

Challenge #2: axioms synthesis regarding complex dataflow
dependencies

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale

Single-data-source assumption: Cannot recognize when
data can be sourced from more than one place (e.g,
cache, store buffer, or more)➝ Incompleteness in
μSPEC axioms synthesis

Manual Translation....

Takeaways

44

SystemVerilog
Processor Design

Abstract Microarchitectural
Model: μSPEC Model

Formal Hardware Verification
with the Check Tools

PipeCheck [MICRO’14]
CCICheck [MICRO’15]
COATCheck [ASPLOS’16]
TriCheck [ASPLOS’17]
RTLCheck [MICRO’17]

CheckMate [MICRO’18]
PipeProof [MICRO’18]

RTL2μSPEC

SystemVerilog
Processor Design

RISC-V multi-V-scale:
Complete proof v.s.
incomplete proof in prior
work [Manerakr+, MICRO’17] Simple

Processor Design
- Single execution path
- Single data-source
-

All μPATHs Per
Instruction

Narrowed Verification Gap!

RTL2MμPATH

Complex
Processor Design

- Coherence
- Data-dependencies axioms
- Non-consecutive revisits
- Modularization
...

CL0

C1 Ci

Homogeneous Shared Memory

…C0

M0 M1 MjM2 …

CLj

C1 Ci

Homogeneous Shared Memory

…C0

Thank you!

45

	Default Section
	Slide 1: Synthesizing High Level Models from RTL for Efficient Verification of Memory Model Implementations

	intro-new
	Slide 2: Memory Consistency Model (MCM) defines the ordering and visibility of shared memory accesses on a multiprocessor
	Slide 3: Memory Consistency Model (MCM) defines the ordering and visibility of shared memory accesses on a multiprocessor
	Slide 4: Challenge: How do we ensure that microarchitecture correctly implements its ISA MCM?
	Slide 5: Challenge: How do we ensure that microarchitecture correctly implements its ISA MCM?

	intro-mcm plus check tools
	Slide 6: Challenge: How do we ensure that microarchitecture correctly implements its ISA MCM?
	Slide 7: The Check Tools Automate Formal Verification of Hardware Memory Model Implementations By Analyzing Abstract Model of Hardware
	Slide 8: Axiomatic Microarchitectural Models Enable Formal Analysis
	Slide 9: Verification Challenge: How to Verify that a μSPEC Accurately Represents a SystemVerilog Microarchitecture
	Slide 10: Roadmap Toward Automatic Synthesis of Verified μSPEC
	Slide 11: Roadmap Toward Automatic Synthesis of Verified μSPEC

	rtl2uspec-uspec/uhb background
	Slide 12: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 13: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 14: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 15: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 16: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 17: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 18: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 19: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 20: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 21: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 22: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

	rtl2uspec_flow and result
	Slide 23: RTL2μSPEC: Synthesizing μSPEC from Processor Design

	transition-rtl2uspec limitation
	Slide 24: Roadmap Toward Automatic Synthesis of Verified μSPEC
	Slide 25: Single Microarchitectural Execution Path (μPATH) Assumption

	rtl2mupath
	Slide 26: Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL
	Slide 27: Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL
	Slide 28: Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL
	Slide 29: Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL
	Slide 30: Conceptualizing Nodes in a μPATH: A Key Challenge to Automated μPATH Discovery with RTL2MμPATH
	Slide 31: Conceptualizing Nodes in a μPATH: A Key Challenge to Automated μPATH Discovery with RTL2MμPATH
	Slide 32: Our Solution: Expressing Nodes in μPATHs using Micro-op Finite State Machines (μFSMs)
	Slide 33: Our Solution: Expressing Nodes in μPATHs using Micro-op Finite State Machines (μFSMs)
	Slide 34: Our Solution: Expressing Nodes in μPATHs using Micro-op Finite State Machines (μFSMs)
	Slide 35: RTL2MμPATH: Synthesizing μPATHs from Processor Design
	Slide 36: RTL2MμPATH: Synthesizing μPATHs from Processor Design
	Slide 37: RTL2MμPATH: Synthesizing μPATHs from Processor Design
	Slide 38: RTL2MμPATH: Synthesizing μPATHs from Processor Design

	rtl2mupath case study
	Slide 39
	Slide 40: CVA6 Core: Results

	future plan
	Slide 41: Roadmap Toward Automatic Synthesis of Verified μSPEC
	Slide 42: Challenge #1: Synthesizing coherence protocol related axioms
	Slide 43: Challenge #2: axioms synthesis regarding complex dataflow dependencies
	Slide 44
	Slide 45

