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Memory Consistency Model (MCM) defines the ordering and visibility 
of shared memory accesses on a multiprocessor

data = 0, flag = 0
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ST [data] 1

ST [flag] 1

C1

LD [flag] 1

LD [data] 0
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Sequential Consistency (SC)
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Can this execution order of 
happen ? 

MCMs determine legal 
outcomes of a parallel 
program on a machine
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Memory Consistency Model (MCM) defines the ordering and visibility 
of shared memory accesses on a multiprocessor
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Challenge: How do we ensure that microarchitecture correctly 
implements its ISA MCM?
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Architecture (ISA)

High-Level Language

Compiler OS

RTL (e.g., SystemVerilog)
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Challenge: How do we ensure that microarchitecture correctly 
implements its ISA MCM?
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Challenge: How do we ensure that microarchitecture correctly 
implements its ISA MCM?

Architecture (ISA)

High-Level Language

Compiler OS

RTL (e.g., SystemVerilog)

State-of-the-art top-down approach: 
Manually encode formal MCM properties, 
map down to RTL signals, and evaluate with 
model checkers to get bounded proofs.
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The Check Tools Automate Formal Verification of Hardware Memory 
Model Implementations By Analyzing Abstract Model of Hardware

Architecture (ISA)

High-Level Language

Compiler OS

RTL (e.g., SystemVerilog)

Omit details not relevant for the verification task 

Abstract Microarchitectural 
Model

PipeCheck [MICRO’14]
CCICheck [MICRO’15]

COATCheck [ASPLOS’16]

TriCheck [ASPLOS’17]

RTLCheck [MICRO’17]

PipeProof [MICRO’18]

Abstract Microarchitectural 
Model: μSPEC Model



TriCheck [ASPLOS’17]

COATCheck [ASPLOS’16]

Architecture (ISA)

High-Level Language

Compiler OS

RTLCheck [MICRO’17]

PipeProof [MICRO’18]

CheckMate [MICRO’18]

PipeCheck [MICRO’14]
CCICheck [MICRO’15]
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Formal Hardware Verification 
with the Check Tools

Axiom Ld_exe_path:

forall microops i, 
IsAnyRead i ⇒ 

AddEdges [((i, IF), (i, DX)); 

((i, DX), (i, RdMm)); 
((i, RdMm), (i, L1$)); 

((i, L1$), (i, WB));] \/

AddEdges [((i, IF), (i, DX)); 
((i, DX), (i, WB));]

// Other axioms...

First order logic axiomatic model of a 
microarchitecture = a set of invariants 
upheld by the microarchitecture:
• Omits combinational logic details
• Retains state updates and 

ordering details

Axiomatic Microarchitectural Models Enable Formal Analysis

RTL (e.g., SystemVerilog)

[Lustig+, ASPLOS’16]

Abstract Microarchitectural 
Model: μSPEC Model



Axiom Ld_exe_path:

forall microops i, 
IsAnyRead i ⇒ 

AddEdges [((i, IF), (i, DX)); 

((i, DX), (i, RdMm)); 
((i, RdMm), (i, L1$)); 

((i, L1$), (i, WB));] \/

AddEdges [((i, IF), (i, DX)); 
((i, DX), (i, WB));]

// Other axioms...

RTL (e.g., SystemVerilog)

Manual Translation....
μSPEC-RTL 

Verification Gap
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Verification Challenge: How to Verify that a μSPEC Accurately 
Represents a SystemVerilog Microarchitecture

Abstract Microarchitectural 
Model: μSPEC Model

Formal Hardware Verification 
with the Check Tools

always @(posedge clk) begin

  if (!rst_n) begin
    ...  

  end else if (if_vld) begin

  end 
    id_op <= if_op;

    id_ex_vld <= if_ex_vld;

    ...

μSPEC looks quite different 
from SystemVerilog!

Handwritten

Problem: Does μSPEC 
accurately represent the RTL? 

Designer Inspection



• Background: The Microarchitecture-μSPEC Model Verification Challenge  

• RTL2μSPEC: Synthesizing μSPEC model from Simple Processor RTL Designs

• RTL2MμPATH: Synthesizing (“Uncovering”) All μPATHs per Instruction from 
Advanced SystemVerilog Processors

• Next Steps: Support synthesis of μSPEC axioms for coherence protocol and 
complex data dependencies in complex processors 

Roadmap Toward Automatic Synthesis of Verified μSPEC 
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Toward automatic synthesis of μSPEC model for complex multiprocessors
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• Background: The Microarchitecture-μSPEC Model Verification Challenge  

• RTL2μSPEC: Synthesizing μSPEC model from Simple Processor RTL Designs

• RTL2MμPATH: Synthesizing (“Uncovering”) All μPATHs per Instruction from 
Advanced SystemVerilog Processors

• Next Steps: Support synthesis of μSPEC axioms for coherence protocol and 
complex data dependencies in complex processors 

Roadmap Toward Automatic Synthesis of Verified μSPEC 
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Microarchitectural Happens-Before (μHB) Analysis Reasons About 
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

μhb graph       

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale Implement Sequential 
Consistency (SC)?

Check Tools: searches all ways 
program executes on hardware 

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Forbidden on SC
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Microarchitectural Happens-Before (μHB) Analysis Reasons About 
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale Implement Sequential 
Consistency (SC)?

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Program Order (PO)
Forbidden on SC



μhb graph       
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Microarchitectural Happens-Before (μHB) Analysis Reasons About 
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

IF
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DX
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PO
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PO

C1
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regfile_WB
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IF
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mem

DX

WB

IF

DX
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IF

DX
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IF
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μSPEC Model
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Forbidden on SC



μhb graph       
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Microarchitectural Happens-Before (μHB) Analysis Reasons About 
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale Implement Sequential 
Consistency (SC)?

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Forbidden on SC

μhb Node: A set of state updates 
performed by a dynamic instruction 
(column) to a set of hardware state 
elements (row) during its execution 
on the microarchitecture.  



μhb graph       
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Microarchitectural Happens-Before (μHB) Analysis Reasons About 
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale Implement Sequential 
Consistency (SC)?

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Forbidden on SC

μhb Edge: Happens-before 
relationship between nodes. 



μhb graph       
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Microarchitectural Happens-Before (μHB) Analysis Reasons About 
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale Implement Sequential 
Consistency (SC)?

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Forbidden on SC

Case 1 of μhb Edge: Localized to 
an instruction to describe a 
particular microarchitectural 
execution path of an instruction. 



μhb graph       

18

Microarchitectural Happens-Before (μHB) Analysis Reasons About 
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale Implement Sequential 
Consistency (SC)?

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Forbidden on SC

Case 2 of μhb Edge: Serialization 
due to contention for shared 
resources  



μhb graph       
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Microarchitectural Happens-Before (μHB) Analysis Reasons About 
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale Implement Sequential 
Consistency (SC)?

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Forbidden on SC

Case 3 of μhb Edge:  
Communication via shared 
resources
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μhb graph       

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale

SAT or SMT solver can answer with easy check!

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Microarchitectural Happens-Before (μHB) Analysis Reasons About 
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

Is illegal outcome possible?
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μhb graph       

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale

SAT or SMT solver can answer with easy check!
- Cyclic: Not observable
- Acyclic: Observable

μSPEC Model

Microarchitectural Happens-Before (μHB) Analysis Reasons About 
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Is illegal outcome possible?



Is illegal outcome possible?
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Microarchitectural Happens-Before (μHB) Analysis Reasons About 
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

μhb graph       

IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale Implement Sequential 
Consistency (SC)?

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Specifies the space of all possible μhb graphs

μSPEC Model

Axiom St_exe_path:

forall microops i, 
IsAnyWrite i ⇒ 

AddEdges [((i, IF), (i, DX)); 

((i, DX), (i, mem_WB))]. 
Axiom Ld_exe_path:

// ... 

// Other axioms...

PO
IF

DX

C0

i0 i1

mem_WB

Microarchitectural 
Execution Path (μPATH) 
Axioms Per-Instruction

i2

C1

i3



assert (property)
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RTL2μSPEC: Synthesizing μSPEC from Processor Design

inst_DX

sw_in_WB

CLK

A
$dff Q

CLK

A
$dff Q

WEN
WA
WD

$mem RD

memwdata

CLK

A
$dff Q

#1 Netlist a.k.a. control- and data-flow graph

inst_DX

DX WBIF

wawen

wd r
d

ra

sw_in_WB

wdata
PC
Mux

wenwd
regfi
le

mem

SystemVerilog design

#3 SVA Embedding w/ Templates

#4 JasperGold

––––
––––

––––
––––

––––
––––

#2 Over-approximation of all possible 
μSPEC axioms

––––
––––
✓––––

––––
✓

#5 Comprehensive set of 
μSPEC axioms

…––––
––––
✓

Open-source RISC-V multi-V-scale case 
study [Hsiao+, MICRO’21]: 
• 6.84 mins serial proof time w/ 120 

SVA properties evaluated
• > 780x performance improvement 

over prior work [Manerakr+, MICRO’17]
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Roadmap Toward Automatic Synthesis of Verified μSPEC 

• Background: The Microarchitecture-μSPEC Model Verification Challenge  

• RTL2μSPEC: Synthesizing μSPEC model from Simple Processor RTL Designs

• RTL2MμPATH: Synthesizing (“Uncovering”) All μPATHs per Instruction from 
Advanced SystemVerilog Processors

• Next Steps: Support synthesis of μSPEC axioms for coherence protocol and 
complex data dependencies in complex processors 



25

Single Microarchitectural Execution Path (μPATH) Assumption

μPATH: Models a specific 
execution of a specific 
dynamic instruction on a 
specific microarchitecture 
as a directed μHB graph 
[Lustig+, MICRO’14].

Axiom St_exe_path:

forall microops i, 
IsAnyWrite i ⇒ 

AddEdges [((i, IF), (i, DX)); 

((i, DX), (i, mem_WB))]. 
Axiom Ld_exe_path:

// ... 

// Other axioms...

RTL (e.g., SystemVerilog)

Abstract Microarchitectural 
Model: μSPEC Model

Formal Hardware Verification 
with the Check Tools

Microarchitectural 
Execution Path (μPATH) 
Axioms Per-Instruction

L1$

mem

IF

DX

WB

LD

miss 
μPATH

IF

DX

regfile_WB

RdMm

L1$

LD

All LD μPATHs:

hit 
μPATH

RTL2μSPEC cannot recognize more 
than one μPATH per instruction
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RTL2MμPATH

SystemVerilog 
Processor Design

Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL

Instruction Encodings

Design Metadata
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Zero-Skip Optimization

Multiplication Unit (mulU)

RTL2MμPATH

SystemVerilog 
Processor Design

Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL

L1$

mem

IF DX WB

ALU
LSU

....

op1

Instruction Encodings

Design Metadata

MUL_mulU(MULN i0):
 if (i0.op0 == 0 || 
      i0.op1 == 0):
    return fast_path  # 1 cyc
return slow_path    # 3 cyc

the active instruction
visits mulU by putting its PC value the 
mulU’s PC Register (PCR)MUL’s own (N) operands 

acc

ctrl

pc_i PCR

op0 == 0?
...

0x420x42 MUL

op0
op1
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Zero-Skip Optimization

Multiplication Unit (mulU)

RTL2MμPATH

SystemVerilog 
Processor Design

Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL

L1$

mem

IF DX WB

ALU
LSU

....

op1

Instruction Encodings

Design Metadata

MUL_mulU(MULN i0):
 if (i0.op0 == 0 || 
      i0.op1 == 0):
    return fast_path  # 1 cyc
return slow_path    # 3 cyc

acc

ctrl

pc_i PCR

op0 == 0?
...

Netlist Analysis

SystemVerilog Assertion (SVA) 
Generation from Templates

Model Checking

assert (property)

prove assert (property)
Te

ch
ni

qu
es
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Zero-Skip Optimization

Multiplication Unit (mulU)

RTL2MμPATH

SystemVerilog 
Processor Design

Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL

L1$

mem

IF DX WB

ALU
LSU

....

op1

Instruction Encodings

Design Metadata

MUL_mulU(MULN i0):
 if (i0.op0 == 0 || 
      i0.op1 == 0):
    return fast_path  # 1 cyc
return slow_path    # 3 cyc

acc

ctrl

pc_i PCR

op0 == 0?
... All MUL μPATHs

IF

ID

acc(1)

acc(2)

acc(3)

WB

MUL
IF

ID

acc(1)

acc(2)

acc(3)

WB

MUL

...
cyc 1

cyc 2

cyc 3

cyc 1

All ADD μPATHs
...

Complete set of μPATHs 
for each instruction 

Cycle-accurate 
μPATHs (new!):
• Nodes: State 

updates in a cycle
• Edges: 1-cycle 

happens-before



acc(1)

acc(3)

WB

IF

ID

acc(2)

MUL

acc(1)

acc(3)

WB

IF

ID

acc(2)

MUL
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Conceptualizing Nodes in a μPATH: A Key Challenge to Automated 
μPATH Discovery with RTL2MμPATH

All reachable 
MUL μPATHs

Asks a model checker 
whether μPATH is reachable 
by MUL in any execution.

...

Multiplication Unit (mulU)

L1$

mem

IF DX WB

ALU
LSU

....

op1

acc

ctrl

pc_i PCR

op0 == 0?
...

RTL2MμPATH
SystemVerilog 

Processor Design

Instruction Encodings

Design Metadata

assert (μPATH)

Discard unreachable MUL μPATHs 



acc(1)

acc(3)

WB

IF

ID

acc(2)

MUL

acc(1)

acc(3)

WB

IF

ID

acc(2)

MUL
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Conceptualizing Nodes in a μPATH: A Key Challenge to Automated 
μPATH Discovery with RTL2MμPATH

All reachable 
MUL μPATHs

Asks a model checker 
whether μPATH is reachable 
by MUL in any execution.

...

Multiplication Unit (mulU)

L1$

mem

IF DX WB

ALU
LSU

....

op1

acc

ctrl

pc_i PCR

op0 == 0?
...

RTL2MμPATH
SystemVerilog 

Processor Design

Instruction Encodings

Design Metadata

assert (μPATH)

Discard unreachable MUL μPATHs 

        

       
  

       

       
     

        

   

          

               

     

     

     

    

    

    
   

       

     

       

           

   

   

       

           

  

  

   

   
RISC-V CVA6 Core [Zaruba+, VLSI’19]

How to recognize a 
node? Requires detecting 
& attributing state update 
to specific instructions

Many instructions 
(colors) in-flight at 
the same time!
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Our Solution: Expressing Nodes in μPATHs using Micro-op Finite 
State Machines (μFSMs)

L1$

mem

IF DX WB

SystemVerilog 
Processor Design

Multiplication Unit (mulU)

ALU
LSU

....

op1

acc

ctrl

pc_i PCR

op0 == 0?
...

Micro-op Finite State Machine (μFSM):
• <IIR, stateVars> tuple
• Orchestrate instruction execution from 

fetch until possibly after commit
• Control instruction state updates per-cycle

ctrl

PCR

0x420x42 MUL

Instruction-identifying register (IIR),  
e.g., register holding PC value. 

stateVarsIIR

An instruction occupies/ 
visits a μFSM by putting 
a unique identifier (e.g., 
its PC) in the μFSM’s IIR. 

State variables, 
encoding a concrete 
FSM state



L1$

mem

IF DX WB

SystemVerilog 
Processor Design

sMUL
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Our Solution: Expressing Nodes in μPATHs using Micro-op Finite 
State Machines (μFSMs)

Multiplication Unit (mulU)

ALU
LSU

....

op1

acc

ctrl

pc_i PCR

op0 == 0?
...

sIDLE

sMUL

sFIN
Updates: acc, ... Updates: acc, ..

Updates: N/A

acc(1)

IF

ID

MUL

...
sMUL(1)

IF

ID

MUL

Micro-op Finite State Machine (μFSM):
• <IIR, stateVars> tuple
• Orchestrate instruction execution from 

fetch until possibly after commit
• Control instruction state updates per-cycle

MUL updates acc 
when ctrl == sMUL

sMUL
PCR == 0x42 && 
ctrl == sMUL

ctrl

PCR
0x42

stateVarsIIR

A μHB node A μFSM in a non-idle
state and occupied by an instruction



L1$

mem

IF DX WB

SystemVerilog 
Processor Design

sMUL
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Our Solution: Expressing Nodes in μPATHs using Micro-op Finite 
State Machines (μFSMs)

Multiplication Unit (mulU)

ALU
LSU

....

op1

acc

ctrl

pc_i PCR

op0 == 0?
...

sIDLE

sMUL

sFIN
Updates: acc, ... Updates: acc, ..

Updates: N/A

acc(1)

IF

ID

MUL

...
sMUL(1)

IF

ID

MUL

Micro-op Finite State Machine (μFSM):
• <IIR, stateVars> tuple
• Orchestrate instruction execution from 

fetch until possibly after commit
• Control instruction state updates per-cycle

MUL updates acc 
when ctrl == sMUL

sMUL
PCR == 0x42 && 
ctrl == sMUL

ctrl

PCR
0x42

stateVarsIIR

Performing location (PL): 
Concrete non-idle state of a μFSM 
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RTL2MμPATH: Synthesizing μPATHs from Processor Design

Multiplication Unit (mulU)

ALU
LSU

....

ctrl

PCR

L1$
mem

 F DX WB

sIDLE

sMUL

sFIN

RTL2MμPATH

SystemVerilog 
Processor Design

Instruction Encodings

Design Metadata
(including μFSMs)
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RTL2MμPATH: Synthesizing μPATHs from Processor Design

Multiplication Unit (mulU)

ALU
LSU

....

ctrl

PCR

L1$
mem

IF DX WB

sIDLE

    

sFIN

Step 1: Synthesizing sets of nodes 
that can form reachable μPATHs RTL2MμPATH

SystemVerilog 
Processor Design

Instruction Encodings

Design Metadata
(including μFSMs)
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RTL2MμPATH: Synthesizing μPATHs from Processor Design

Multiplication Unit (mulU)

ALU
LSU

....

ctrl

PCR

L1$
   

IF DX WB

sIDLE

sMUL

sFIN

Step 1A: Enumerate all possible 
PLs (concrete μFSM states) 

with netlist analysis

n PLs

Worst case: 2n sets (n > 40)

Can <inst> visit <PL>?

Step 1B: SVA property-driven 
μPATH pruning

Can any instruction 
visit <PL>?

Can <inst> visit <PL1> 
without visiting <PL2>?

Can <inst> visit both 
<PL1> and <PL2>?

IF

sMUL

sFIN

WB

MUL MUL MUL 

...

MUL 

...

Step 1: Synthesizing sets of nodes 
that can form reachable μPATHs 

SystemVerilog 
Processor Design

Instruction Encodings

Design Metadata
(including μFSMs)

Ask a model checker…



38

RTL2MμPATH: Synthesizing μPATHs from Processor Design

Multiplication Unit (mulU)

ALU
LSU

....

ctrl

PCR

L1$
mem

IF DX WB

sIDLE

    

sFIN

Step 1A: Enumerate all 
possible PLs (concrete

μFSM states) with 
netlist analysis

n PLs

Step 1B: SVA 
property-driven 
μPATH pruning

IF

sMUL

sFIN

WB

Step 1: Synthesizing sets of nodes 
that can form reachable μPATHs 

SystemVerilog 
Processor Design

Instruction Encodings

Design Metadata
(including μFSMs)

...
MUL 

IF

sMUL

sFIN

WB

MUL 
IF

sMUL

sFIN

WB

MUL 

Candidate 
sets of nodes 
(10s to ~1k)

...

Step 1C: Embed node 
sets as SVA properties 
to deduce reachability

    <   >       < F, 
    , W > b      
  h    (    ,  F N)?

Ask a model checker…Step 2: Synthesizing full μPATHs by 
adding edges to reachable node sets

Details in the 
paper [Hsiao, 
MICRO’24]!



▪ RISC-V CVA6

▪ 64-bit, 6-stage, single-issue core

▪ Speculation and limited out-of-
order write-back with diverse 
functional units (ALU, LSU, Mul/Div, 
CSR buffer)

▪ 72 instructions in RV64I base ISA + M 
extension (RV64IM)

▪ Synthesize per-instruction μPATH
axioms from Core and Data Cache 

respectively
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CVA6 Core and Cache Case Study [Hsiao+, MICRO’24]

        

       

  

  

       

       
     

        

   

          

               

     

     

     

    

    

    
   

       

     

       

           

   

          

       

           

  

  
   

   

CVA6 Core [Zaruba+, VLSI’19]



CVA6 Core: Results
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• Complexity statistics: 8,577 LoC (SystemVerilog); after 
elaboration: 22,138 wires, 19,575 standard cells, 482 
registers (11,985 D flip-flop bits), 3 memories. 

• 124,459 properties
• Average ~4 min per property
• ~16% undetermined under timeout of 30 minutes

CVA6 Cache: Preliminary Results
• Complexity statistics: 2,279 LoC (SystemVerilog); 4-

way, 128B (scaled down from 32 KB), write-through, 
coalescing write-buffer

•  4,178 properties
• Average < 3 sec per property 
• All completed

Benefits of 
modularization

https://github.com/yaohsiaopid/SynthLC
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Roadmap Toward Automatic Synthesis of Verified μSPEC 

• Background: The Microarchitecture-μSPEC Model Verification Challenge  

• RTL2μSPEC: Synthesizing μSPEC model from Simple Processor RTL Designs

• RTL2MμPATH: Synthesizing (“Uncovering”) All μPATHs per Instruction from 
Advanced SystemVerilog Processors

• Next Steps: Support synthesis of μSPEC axioms for coherence protocol 
and complex data dependencies in complex processors 
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Challenge #1: Synthesizing coherence protocol related axioms

C0

(i0) ST [data] 1

(i1) ST [data] 2

C1

(i2) LD [data] 2

(i3) LD [data] 1

directory

mem

IF

DX

W 

IF

DX

WB

IF

DX

WB

IF

 X

WB

L1$ L1$ L1$ L1$

Cache coherence protocols ensure 
that multiple cached copies of an 
address are kept up-to-date

IF

DX

regfile_WB

RdMm

L1$

(i0) (i1) (i2) (i3)



μhb graph       
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IF

mem_WB

DX

i1
PO

C0

i2
PO

C1

i3

regfile_WB

i0

Implement Sequential 
Consistency (SC)?

μSPEC Model

C0

(i0) ST [data] 1

(i1) ST [flag] 1

C1

(i2) LD [flag] 1

(i3) LD [data] 0

Forbidden on SC

For μhb edges instantiated for 
communication via shared 
resources:

Challenge #2: axioms synthesis regarding complex dataflow 
dependencies

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale

Single-data-source assumption: Cannot recognize when 
data can be sourced from more than one place (e.g, 
cache, store buffer, or more)➝ Incompleteness in 
μSPEC axioms synthesis 



Manual Translation....

Takeaways
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SystemVerilog 
Processor Design

Abstract Microarchitectural 
Model: μSPEC Model

Formal Hardware Verification 
with the Check Tools

PipeCheck [MICRO’14]
CCICheck [MICRO’15]
COATCheck [ASPLOS’16]
TriCheck [ASPLOS’17]
RTLCheck [MICRO’17]

CheckMate [MICRO’18]
PipeProof [MICRO’18]

RTL2μSPEC

SystemVerilog 
Processor Design

RISC-V multi-V-scale: 
Complete proof v.s. 
incomplete proof in prior 
work [Manerakr+, MICRO’17] Simple 

Processor Design
- Single execution path
- Single data-source
- ....

All μPATHs Per 
Instruction

Narrowed Verification Gap!

RTL2MμPATH

Complex
Processor Design

- Coherence 
- Data-dependencies axioms
- Non-consecutive revisits
- Modularization
... 

CL0

C1 Ci

Homogeneous Shared Memory

…C0

M0 M1 MjM2 …

CLj

C1 Ci

Homogeneous Shared Memory

…C0



Thank you! 
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