Synthesizing High Level Models from RTL for Efficient
Verification of Memory Model Implementations

Yao Hsiao, Caroline Trippel

Jan 10, 2025

Stanford University

Memory Consistency Model (MCM) defines the ordering and visibility
of shared memory accesses on a multiprocessor

data = 0, flag =
Can this execution order of

Co C1
@ ST [data] 1 QLD [flag] 1 @@@ happen

@ sT [flag] 1 @LD [data] ©

(,.}

| SequentlalConS|stency(SC)

? ? v_arm 3 X4 123

Homogeneous Shared Memory MCMs determine legal
outcomes of a parallel

program on a machine

J

Stanford University

Memory Consistency Model (MCM) defines the ordering and visibility
of shared memory accesses on a multiprocessor

data = 0, flag = ©

Co c1
@ ST [data] 1 QLD [flag] 1
@D sST [flag] 1 Q)LD [data] ©

(.
3 CLO) CLj)

?

Homogeneous Shared Memory Homogeneous Shared Memory
\& 2\ 2/

A z
oo - ©

Stanford University

Challenge: How do we ensure that microarchitecture correctly
implements its ISA MCM?

f Y

High-Level Language

A

>
Compiler OS

- CcLO N\ [CLj N
Architecture (ISA)

.

RTL (e.g., SystemVerilog)

Stanford University

Challenge: How do we ensure that microarchitecture correctly
implements its ISA MCM?

f Y

High-Level Language

A

p
_ Compiler OS
4 CLO)

? @ @ Architecture (ISA)
Homogeneous Shared Memory q
. I

= RTL (e.g., SystemVerilog)

Stanford University

Challenge: How do we ensure that microarchitecture correctly
implements its ISA MCM?

High-Level Language

Compiler OS

Architecture (ISA)

State-of-the-art top-down approach:
Manually encode formal MCM properties,
map down to RTL signals, and evaluate with
model checkers to get bounded proofs.

RTL (e.g., SystemVerilog)

Stanford University

The Check Tools Automate Formal Verification of Hardware Memory
Model Implementations By Analyzing Abstract Model of Hardware

PipeProof [MICRO’18] <

RTLCheck [MICRO’17] ™

Stanford University

—

High-Level Language

Compiler OS

Architecture (ISA)

A

>

.

Abstract Microarchitectural
Model: uSPEC Model

<

J

')

RTL (e.g., SystemVerilog)

—

__ TriCheck [ASPLOS’17]
COATCheck [ASPLOS’16]

T

— PipeCheck [MICRO’14]

CCICheck [MICRO’15]

Omit details not relevant for the verification task

Axiomatic Microarchitectural Models Enable Formal Analysis

[Lustig+, ASPLOS’16]

(Axiom Ld exe path:

forall microops 1i,

IsAnyRead 1 =

AddEdges [((i, IF), (i, DX));
((i, DX), (i, RdMm));

((i, RdMm), (i, L1%$));

((i, L1%), (i, WB));] \/
AddEdges [((i, IF), (i, DX));
((i, DX), (i, WB));]

k// Other axioms... y

\

Y

First order logic axiomatic model of a

microarchitecture = a set of invariants

upheld by the microarchitecture:

« Omits combinational logic details

* Retains state updates and
ordering details

J
I

7

High-Level Language

D

4

Formal Hardware Verification
with the Check Tools

<

Abstract Microarchitectural
Model: uSPEC Model

¢

1

RTL (e.g., SystemVerilog)

> TriCheck [ASPLOS’17]

COATCheck [ASPLOS’16]

T

— PipeCheck [MICRO’14]
CCICheck [MICRO’15]

Verification Challenge: How to Verify that a ygSPEC Accurately

Represents a SystemVerilog Microarchitecture

(Axiom Ld exe path:

forall microops 1i,
IsAnyRead i =

AddEdges [((i, IF), (i, DX));

VS Handwritten

((i, L1$), (i, WB));] \/
AddEdges [((i, IF), (i, DX));
((i, DX), (i, WB));]
\// Other axioms...

J

Problem: Does uSPEC
accurately represent the RTL?

Stanford University

USPEC looks quite different
from SystemVerilog!

\

Formal Hardware Verification
with the Check Tools

b,

Abstract Microarchitectural

Model: uSPEC Model

HSPEC-RTL
Verification Gap

RTL (e.g., SystemVerilog)

(giways @(posedge clk) begin
if (!rst_n) begin

L el A =

atdal)

QDeS|gner Inspectlon

id ex vld <= if_ex_vld;

=

I0 Op <= 1IT_0p,

Roadmap Toward Automatic Synthesis of Verified uSPEC

* RTL2uSPEC: Synthesizing uSPEC model from Simple Processor RTL Designs

* RTL2MuPATH: Synthesizing (“Uncovering”) All yPATHSs per Instruction from
Advanced SystemVerilog Processors

* Next Steps: Support synthesis of u.SPEC axioms for coherence protocol and
complex data dependencies in complex processors

Toward automatic synthesis of UYSPEC model for complex multiprocessors

Stanford University

10

Roadmap Toward Automatic Synthesis of Verified uSPEC

* RTL2uSPEC: Synthesizing uSPEC model from Simple Processor RTL Designs

Stanford University

11

Microarchitectural Happens-Before (UHB) Analysis Reasons About

Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

wden on SC]

co 1
(i0) ST [data] 1 (i2) LD [flag] 1 —
(i1) ST [flag] 1 (i3) LD [data] ©

IFIHIIFINLIIFL L LIF
DX IDX]| |DX]|]|DX

WBJ||[WB]||{WB]|||WB

MSPEC Model

arbiter

IF

DX

mem_IWB

regfile WB

phb graph

i@

co

PO

il

i2

C1

PO

i3

mem
RISC-V multi-V-scale / |!MmPlement Sequentia
Consistency (SC)?

J

Stanford University

Check Tools: searches all ways
program executes on hardware

J.

Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

4

co

Program Order (PO)

Co
[(i0) sT [data] 1]

Stanford University

13

Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

IF
IF mem_WB
WB regfile WB

mem

Stanford University

Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

IF

O

[(i0) sT [data] 1]

/uhb Node: A set of stateup%

performed by a dynamic instruction
(column) to a set of hardware state
elements (row) during its execution

mem \°" the microarchitecture.)

WB

Stanford University

Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

io il

x O=0

phb Edge: Happens-before
relationship between nodes.

Stanford University

16

Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

ie
co IF
(i1) ST [flag] 1
DX
IF mem_WB

DX
WB /M
(Case 1 of yhb Edge: Localized to
an instruction to describe a
particular microarchitectural
\execution path of an instruction. Yy

mem

Stanford University

Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

Cco
io il
Cco
(i@) ST [data] 1

(i1) ST [flag] 1 wa

DX (Case 2 of yhb Edge: Serialization
due to contention for shared

kresources Y

Stanford University 18

Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

Co Cl
il i2
Cco Cl
(i2) LD [flag] 1
(i1) ST [flag] 1

(Case 3 of phb Edge: T

Communication via shared

\resou Fces)

Stanford University 19

Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

(i@) ST [data] 1
(i1) ST [flag] 1

Co

[Is illegal outcomep\ossﬁle?_]

C1 -
(i2) LD [flag]| 1
(i3) LD [data]| o

IF

DX

mem_IWB

regfile WB

co C1
i@ il i2 i3
PO PO

N

IF||[|TF[I[|IFI|||TIF
Sl ox1l il ox HSPEC Model
wa| || [we]|| [we]||[ws
| aLbitér |
mclem
RISC-V multi-V-scale \

Stanford University

SAT or SMT solver can answer with easy check!

20

Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

[Is illegal outcomep\ossﬁle?_] co C1
i0 il i2 i3

Co C1 - e PO PO
(i@) ST [data] 1 (i2) LD [flag]| 1 |—
(i1) ST [flag] 1 (i3) LD [data]|® ox
—)
IFIHIIFIIFLIIF mem_WB
Sl Ex1 1 ox1 1| ox MSPEC Model
we] || [we]|| [wB] || [wB regfile WB /\
arbiter SAT or SMT solver can answer with easy check!
mem - Cyclic: Not observable

RISC-V multi-V-scale

Stanford University

S Acyclic: Observable

21

Microarchitectural Happens-Before (UHB) Analysis Reasons About
Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

co C1
io il i2 i3
IF

Axiom St _exe_ path:
forall microops i

Microarchitectural
Execution Path (UPATH) DX
Axioms Per-Instruction

), mem_WB
HSPEC Model

[Specifies the space of all possible phb graphs]

| // Other axioms...

Stanford University

RTL2uSPEC: Synthesizing ySPEC from Processor Design

IF _ DX _ WB
sw_in WB
I 3
. [))(>
‘PC) inst_ _I., mem
u »| [_wdata
a 71 a

SystemVerilog design

J

—

CLK
A $dff Ql
sw in WB WEN
o WA | $mem |RD
C:K safe| A $dff| Q WD
- wdata mem
inst_DX

#1 Netlist a.k.a. control- and data-flow graph

\ £

PO: ass

Pl: ass
P2: ass
P3: ass
AQ: assert ('PCR_<stage(s)> == pc0 |-—> s ==

E5iod

(first
“PCR 0
(first

|-> ((CPCR_O

pcl |—>
(10) == op);

!= pcO [*0:$]1) ##1
== pcO [*1:$]) ##1 ("PCR O

TIFR == i0);

1= pc0)));
|-> s_eventually(PCR_<stage(s)> == pc0));
(PCR_O0 ==
(opcode
$past(s));

« BEEEBEBE

#3 SVA Embedding w/ Templates
assert (property)

’

=

#4 JasperGold

Stanford University

épen—source RISC-V multi-V-scale case\
study [Hsiao+, MICRO’21]:

¥

Vj |: * 6.84 mins serial proof time w/ 120

¥

#5 Comprehensive set of
HSPEC axioms

SVA properties evaluated
e >780x performance improvement
\ over prior work [Manerakr+, MICRO’17]/

23

Roadmap Toward Automatic Synthesis of Verified uSPEC

* RTL2MuPATH: Synthesizing (“Uncovering”) All yPATHSs per Instruction from
Advanced SystemVerilog Processors

Stanford University

24

Single Microarchitectural Execution Path (UPATH) Assumption

Axiom St _exe_ path:
forall microops i

Microarchitectural
Execution Path (WPATH)

Axioms Per-Instruction

T7 coc

| // Other axioms...

J

/pPATH: Models a séfic\

execution of a specific
dynamic instructionon a
specific microarchitecture
as a directed yHB graph
\[Lustig+, MICRO’14].

r

Formal Hardware Verification

\

with the Check Tools

\

J

Stanford University

.

Abstract Microarchitectural
Model: yYSPEC Model 4

J

ALl LD pPATHSs:

LD LD
IF
DX
regfile_WB
RdMm
IF ==
DX L1$)

RTL2uSPEC cannot recognize more
than one yPATH per instruction

RTL (e.g., SystemVerilog)]_\

mem

25

Overview of RTL2ZMuPATH: Multi-uPATH Synthesis from RTL

[SystemVerilog]_
Processor Design RTL2MuPATH

[Instruction Encodings]—

[Designh Metadata]—

Stanford University

Overview of RTL2ZMuPATH: Multi-uPATH Synthesis from RTL

visits mulU by putting its PC value the
the activei mulU’s MUL’s own (N) operands

ALU
LSU

Multiplication Unit (mulU)

= return fast_path # 1 cyc
0x42 MUL |3X WBi returnslow_path | #3 cyc,

L1$ Zero-Skip Optimization

mem

[SystemVerilog]_
Processor Design RTL2MuPATH

[Instruction Encodings]—

[Designh Metadata]—

Stanford University 27

Overview of RTL2ZMuPATH: Multi-uPATH Synthesis from RTL

ALU
LSU .
'MUL_mulU(MULNi0):)
'I,-_' if (i0.0p0==0 |
Multiplication Unit (mull) 10.0p1 == 0):
— = return fast_path # 1 cyc
IF [DX WB || return slow_path #3 cyc,
L1$ Zero-Skip Optimization
mem -~
[SystemVerilog]_ ? Netlist Analysis assert (property)
Processor Design & | SystemVerilog Assertion (SVA)
[]_ RTL2MuPATH g _‘ci Generation from Templates
Instruction Encodings R
Model Checkin
. & /\

[Designh Metadata]—

Stanford University

prove assert (property)

28

Overview of RTL2MuPATH: Multi-uPATH Synthlﬁis from RTL
2\ AlLADD pPATHSs

Multiplication Unit (mulU) "

éycle-accurate
HPATHs (new!):
Nodes: State

Edges: 1-cycle

updates inacycle

> ALl MUL pPATHSs
MUL MUL

'MUL_mulU(

10.0p1 ==

if (i0.0p0 ==

return fast_path # 1 cyc

MULNiO):)

O]
):

Jeturnislow_path | # 3 cyc

- IF
K happens—beforeJID 8

Stanford University

cyc 1
cyc 2

cyc 3

\
N\

Zero-Skip Optimization
m Complete set of yPATHs

for each instruction

29

Conceptualizing Nodes in a yPATH: A Key Challenge to Automated

UPATH Discovery with RTL2ZMuPATH
ALU || op0 J
LSU || op1 (MUL\
pc_i IF
Multiplication Unit (mull) " 1D
\? DX W acc(1)
Li$ acc(2)
mem acc(3)

SystemVerilog WB
Processor Design .)
assert (UPATH) ,\/4{ All reachable

Asks a model checker J - UL [PETIe

whether pPATH is reachable > x Discard unreachable MUL pPATHs
Stanford University by MUL in any execution. 30

Conceptualizing Nodes in a pPATH: A Key Challenge to Automated
HPATH Discovery with RTLZMUPATZEMW instructionq

colors) in-flight a
RISC-V CVA6 Core [Zaru b:ilz-)l(-é VLSI’19]

How to recognize a h

the same time! node? Requires detecting

Frontend ID commit/ :
i S tb cm_stb a a
issue — o T e e PEY 4 MUL & attrlpqtlpg state.update
e [st unit b= [7q unit y ~\to specific instructions
regfile I """ IF
oC [1d_buff J«—
Mux ID
scoreboard
isud |...|pc|xpt|vld 1 aCC(1)
T acc(2)
' acc(3)
SystemVerilog] WB
g J

Processor Design

assert (UPATH) _ y\/A{ ﬁbrfaﬂ;\?-ﬁe
Asks a model checker J H S

whether pPATH is reachable > X Discard unreachable MUL pPATHs
Stanford University by MUL in any execution. 31

Our Solution: Expressing Nodes in uPATHs using Micro-op Finite
State Machines (UFSMs) L 7

ALU
LSU

State variables,

| encoding a concrete
[e

MultiplicatiZnit (mulUl) | (_/\
0x42 MUL An instruction occupies/ Micro-op Finite State Machine (UFSM): _O?
TF X | WH Visits a yFSM by putting . <IIR, stateVars> tuple ,

L1$? ““iq‘fe identifier’ (e.g., * Orchestrate instruction execution from
. \ts PC) in the pFSM's IR. fetch until possibly after commit

mem (Control instruction state updates per—cycle)

SystemVerilog
Processor Design

\

Stanford University 32

Our Solution: Expressing Nodes in uPATHs using Micro-op Finite
State Machines (UFSMs)

ALU || op0—
o SR

pe_ 0x42 A
Multiplication Unit (mulU)

MUL

= FC
Updates: N/A D () ‘ ——
foﬁ acc(1 [‘] sMUL(1 {ctrl =sMUL J

Updates: acc, A uHB node € A yFSM in a non- |dle
state and occupied by an mstructlon

MUL updates acc J

Stanford Universf\yhen ctrl == sMUL 33

Our Solution: Expressing Nodes in uPATHs using Micro-op Finite
State Machines (UFSMs)

ALU || op0—
o SR

pe_ 0x42 A
Multiplication Unit (mulU)

&= FO
Updates: N/A D () - s
foﬁ acc(1 [‘] sMUL(1) {ctrl =sMUL J

Updates: acc, : Performlng locatlon (PL):]

MUL updates acc Concrete non-idle state of a yFSM
Stanford Universf\yhen ctrl == SMULJ 34

RTL2MuPATH: Synthesizing uPATHs from Processor Design

= ==

pcr| T SMUL D

G SGrme
Multiplication Unit (mulU)

IF|DX WB”

L15

mem

[Design Metadata] RTL2MpPATH
(

including pFSMs)

RTL2MuPATH: Synthesizing uPATHs from Processor Design

= ==

pcr| T SMUL D

G SGrme
Multiplication Unit (mulU)

IF D_X WB”

L1$
mem

SystemVerilog
Processor Design
[Instruction Encodings]—

Design Metadata
(including pFSMs)

Step 1: Synthesizing sets of nodes
RTL2MpuPATH that can form reachable yPATHs

RTL2MuPATH: Synthesizing yPATHs from Processor Design

ALU O Step 1: Synthesizing sets of nodes
S SIDLE that can form reachable pPATHs
. -y
Multiplication Unit (mulU) Ask a model checker...| U
MUL MUL MUL MUL Can any instruction
LF DX WB” visit <PL>?
L1$ ir O O
mém n PLs sMUL O O O Can <inst> visit <PL>?
SystemVeri[og SFIN O O l Can <inst> visit <PL1>
Processor Design WB 9 O C)J without visiting <PL2>?
“h Can <inst> visit both
[Instruction Encodings |+ Worst case: 2 sets (n > 40) <PL1> and <PL2>?
. - Step 1A: Enumerate all possible Step 1B: SVA property-driven
Design Metadata PLs (concrete pFSM states) UPATH pruning
(including pFSMs) with netlist analysis 3

RTL2MuPATH: Synthesizing uPATHs from Processor Design

ALU
N

’»
] (SR

Multiplication Unit (mulU)

SIDLE

TF[DX[WB]]
L15
mem

n

|

SystemVerilog
Processor Design

]_

[Instruction Encodings]—

g

Design Metadata
including pFSMs)

IF
PLs < sMUL

Step 1: Synthesizing sets of nodes

that can form reachable pPATHs Details in the

Step 2: Synthesizing full pRAFsdnec paper [Hsiao,

gsete <11 MICRO24]!
sMUL, WB> lbut no

others (e.g., N)?
X WV K

MUL MUL

IF IF O

MUL MUL
SFIN ‘ ” Q‘s O

]_

pFSM states) with
netlist analysis

<FIN <EIN O Candidate
WB ... sets of nodes
ws O ws O (10s to ~1k)
Step 1A: Enumerate all Step 1B: SVA Step 1C: Embed node
=) possible PLs (concrete property-driven sets as SVA properties

MPATH pruning to deduce reachability
38

CVAG6 Core and Cache Case Study [Hsiao+, MICRO’24]

= RISC-V CVA6
= 64-bit, 6-stage, single-issue core

= Speculation and limited out-of-
order write-back with diverse
functional units (ALU, LSU, Mul/Div,
CSR buffer)

= 72 instructionsin RV64l base ISA+ M
extension (RV64IM)

= Synthesize per-instruction yPATH
axioms from Core and Data Cache
respectively

Stanford University

Frontend

|13

PC T

Mux

ID

|IstQI

BTB/
PHT/

RAS

i

.....

commit/ EXE
. - 1sq sp stb cm_stb
issue =
> | [| | > | le—
—] @1)
—>| 1d_op I
; »| mem
fil 3
[1d buff Je—T
branch ufit p—
scoreboard
isud | . | pc |xpt |v1d
= <

.....

CVAG Core [Zaruba+, VLSI’19]

39

CVAG Core: Results

Complexity statistics: 8,577 LoC (SystemVerilog); after
elaboration: 22,138 wires, 19,575 standard cells, 482
registers (11,985 D flip-flop bits), 3 memories.

124,459 properties

Average ~4 min per property

~16% undetermined under timeout of 30 minutes

CVAG6 Cache: Preliminary Results

Complexity statistics: 2,279 LoC (SystemVerilog); 4-
way, 128B (scaled down from 32 KB), write-through,
coalescing write-buffer

4,178 properties

Average < 3 sec per property
All completed

Benefits of
modularization

Stanford University

IF

ID(1)
ID(1)
issue
scblss
scbFin
scbCmt

IF

ID

issue
LSQ(1)
LsQ(l)
IdStall(1)
IdStall(l)
IdFin
scblss(1)
scblss(1)
scbFin
scbCmt

memReq
\

ADD

ADD

comSTB
wBTn(1)
Mem(1)
wBVd(1)

wrS0
wRTg(1)
wBTn(2)
Mem(2)
wBVd(2)
wRTg(2)
wBTn(3)
Mem(3)
wBVd(3)

ST

ST

)

https://github.com/yaohsiaopid/SynthLC

40

Roadmap Toward Automatic Synthesis of Verified uSPEC

* Next Steps: Support synthesis of uUSPEC axioms for coherence protocol
and complex data dependencies in complex processors

Stanford University

41

Challenge #1: Synthesizing coherence protocol related axioms

Co Cl
(i@) ST [data] 1 (i2) LD [data] 2
(i1) ST [data] 2 (i3) LD [data] 1
(10) (i1) (12) (13)

Cache coherence protocols ensure

: . IF
that multiple cached copies of an
address are kept up-to-date DX
V'S .
tF] || [zF] || [zF]|| [zF regfile_W8
I I I I ’
DX]|||ox]{|[pX]|] DX RdMm) ey
1 1 1 1 ”¢ /, P
N:B W:B W:B W:B L1 $ -). ,z'
L |[caglfLaglfeag] 0202020200000 TTTTmmm=ee- ol ’)
I I I I P
directory
mem

Stanford University

42

Challenge #2: axioms synthesis regarding complex dataflow
dependencies

co C1
il i2
co (o1
(i2) LD [flag] 1
(i1) ST [flag] 1
IF|||[ZF]|| [ZF]||[ZF mem_WB
D:X DX]|| [OX]|[[DX
W.B N.B W.B W.B .\
arbiter @ingle-data—source assumption: Cannot recognize when\
em data can be sourced from more than one place (e.g,

RISC-V multi-V-scale

Stanford University

cache, store buffer, or more)— Incompleteness in

\USPEC axioms synthesis Y,

43

Takeaways

PipeCheck [MICRO’14] (- Coherence A
e | — f ifi .) |- Data-dependencies axioms
CCICheck [MICRO’15] Formal Hardware Verification P

COATCheck [ASPLOS™16] \ with the Check Tools) - Non-con.sec.utive revisits
TriCheck [ASPLOS™1 7] - Modularization

>
Abstract Microarchitectural

RTLCheck [MICRO*17] Model: uSPEC Model R/ /
PipeProof [MICRO’18] . g -
CheckMate [MICRO’18] — t ; Narrowed Verification Gap!

4 CLO N\ CLj I d

All uPATHs Per

i i Instruction

erito
Homogeneous Shared Memor
\ & / ﬁr .

@

Homogeneous Shared Memory

2 Y V4)
[[][] J [Complex]

| Processor Design

44

Stanford University

Thank you!

45

	Default Section
	Slide 1: Synthesizing High Level Models from RTL for Efficient Verification of Memory Model Implementations

	intro-new
	Slide 2: Memory Consistency Model (MCM) defines the ordering and visibility of shared memory accesses on a multiprocessor
	Slide 3: Memory Consistency Model (MCM) defines the ordering and visibility of shared memory accesses on a multiprocessor
	Slide 4: Challenge: How do we ensure that microarchitecture correctly implements its ISA MCM?
	Slide 5: Challenge: How do we ensure that microarchitecture correctly implements its ISA MCM?

	intro-mcm plus check tools
	Slide 6: Challenge: How do we ensure that microarchitecture correctly implements its ISA MCM?
	Slide 7: The Check Tools Automate Formal Verification of Hardware Memory Model Implementations By Analyzing Abstract Model of Hardware
	Slide 8: Axiomatic Microarchitectural Models Enable Formal Analysis
	Slide 9: Verification Challenge: How to Verify that a μSPEC Accurately Represents a SystemVerilog Microarchitecture
	Slide 10: Roadmap Toward Automatic Synthesis of Verified μSPEC
	Slide 11: Roadmap Toward Automatic Synthesis of Verified μSPEC

	rtl2uspec-uspec/uhb background
	Slide 12: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 13: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 14: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 15: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 16: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 17: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 18: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 19: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 20: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 21: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]
	Slide 22: Microarchitectural Happens-Before (μHB) Analysis Reasons About Observability of Hardware-level Program Execution [Lustig+, MICRO’14]

	rtl2uspec_flow and result
	Slide 23: RTL2μSPEC: Synthesizing μSPEC from Processor Design

	transition-rtl2uspec limitation
	Slide 24: Roadmap Toward Automatic Synthesis of Verified μSPEC
	Slide 25: Single Microarchitectural Execution Path (μPATH) Assumption

	rtl2mupath
	Slide 26: Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL
	Slide 27: Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL
	Slide 28: Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL
	Slide 29: Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL
	Slide 30: Conceptualizing Nodes in a μPATH: A Key Challenge to Automated μPATH Discovery with RTL2MμPATH
	Slide 31: Conceptualizing Nodes in a μPATH: A Key Challenge to Automated μPATH Discovery with RTL2MμPATH
	Slide 32: Our Solution: Expressing Nodes in μPATHs using Micro-op Finite State Machines (μFSMs)
	Slide 33: Our Solution: Expressing Nodes in μPATHs using Micro-op Finite State Machines (μFSMs)
	Slide 34: Our Solution: Expressing Nodes in μPATHs using Micro-op Finite State Machines (μFSMs)
	Slide 35: RTL2MμPATH: Synthesizing μPATHs from Processor Design
	Slide 36: RTL2MμPATH: Synthesizing μPATHs from Processor Design
	Slide 37: RTL2MμPATH: Synthesizing μPATHs from Processor Design
	Slide 38: RTL2MμPATH: Synthesizing μPATHs from Processor Design

	rtl2mupath case study
	Slide 39
	Slide 40: CVA6 Core: Results

	future plan
	Slide 41: Roadmap Toward Automatic Synthesis of Verified μSPEC
	Slide 42: Challenge #1: Synthesizing coherence protocol related axioms
	Slide 43: Challenge #2: axioms synthesis regarding complex dataflow dependencies
	Slide 44
	Slide 45

