
1

Memory Consistency Model-Aware Cache
Coherence for Heterogeneous Hardware

RACHEL CLEAVELAND AND CAROLINE TRIPPEL

STANFORD UNIVERSITY

2024 Formal Methods in Computer-Aided Design

Prague, Czech Republic

October 17, 2024

2

Modern Trends in Hardware Design

3

Core 1 Core 2 Core 3

Memory Memory MemoryMemory

Parallelism and Memory Correctness

W x

R y

W x

W y

R x

R y

Shared

Memory

+

Parallelism

Hardware optimizations

may buffer and reorder

instructions at each core.

4

Core 1 Core 2 Core 3

Memory Memory MemoryMemory

Cache 1 Cache 2 Cache 3

Cache coherence protocol

Cache coherence protocols

minimally maintain coherence

(all cores agree on a total order

on same-address accesses).

Parallelism and Memory Correctness

W x

R y

W x

W y

R x

R y

W x = 1

W x = 2

R x = 2

R x = 1

Shared

Memory

Optimizations

Caching

+

+

+

Parallelism

5

R x = 2

R x = 1

W x = 1

W x = 2

Parallelism and Memory Correctness

Shared

Memory

Optimizations

Caching

+

+

+

Parallelism

6

Parallelism and Memory Correctness

Core

Thread 1

W x = 1

W x = 2

Thread 2

R x = 2

R x = 1

Nearly all architectures

enforce coherence,

disallowing this outcome.

Disallowed by

Allowed by

Memory consistency models

(MCMs) define the ordering

requirements between all

memory operations in a

program.

Parallelism

Shared

Memory

Optimizations

Caching

Heterogeneity

+

+

+

+

Thread 1

W x = 1

W flag = 1

Thread 2

R flag = 1

R x = 0

7

Heterogeneity in Modern Hardware

Parallelism

Shared

Memory

Optimizations

Caching

Heterogeneity

+

+

+

+

8

Memory

L2

Core 1 Core 2 Core 3

Cache 1 Cache 2 Cache 3

x86 Cluster

Cache coherence protocol

L2

Core 1 Core 2 Core 3

ARM Cluster

Thread 1

W x = 1

W flag = 1

Thread 2

R flag = 1

R x = 0

Parallelism

Shared

Memory

Optimizations

Caching

Heterogeneity

+

+

+

+

Heterogeneity and Memory Correctness

Cache 1 Cache 2 Cache 3

Cache coherence protocol

9

Parallelism

Shared

Memory

Optimizations

Caching

Heterogeneity

+

+

+

+

Heterogeneity and Memory Correctness

Memory

L2

Core 1 Core 2 Core 3

x86 Cluster

L2

Core 1

ARM Cluster

Core 2 Core 3

W x = 1

W flag = 1

Cache 1 Cache 2 Cache 3

Cache coherence protocol

Cache 1 Cache 2 Cache 3

Cache coherence protocol

R flag = 1

R x = 0

10

Parallelism

Shared

Memory

Optimizations

Caching

Heterogeneity

+

+

+

+

Heterogeneity and Memory Correctness

Memory

L2

Core 1 Core 2 Core 3

x86 Cluster

L2

Core 1

ARM Cluster

Core 2 Core 3

Cache 1 Cache 2 Cache 3

Cache coherence protocol

Cache 1 Cache 2 Cache 3

Cache coherence protocol

W x = 1

W flag = 1

R flag = 1

R x = 0

11

Parallelism

Shared

Memory

Optimizations

Caching

Heterogeneity

+

+

+

+

Heterogeneity and Memory Correctness

Memory

L2

Core 1 Core 2 Core 3

x86 Cluster

L2

Core 1 Core 2 Core 3

ARM Cluster

Q2: how to design a

“heterogeneous” cache

coherence protocol?

R flag

R x

Q1: what is the

system-wide

MCM?

Cache 1 Cache 2 Cache 3

Cache coherence protocol

Cache 1 Cache 2 Cache 3

Cache coherence protocol

W x = 1

W flag = 1 ?

12

Do not address

MCM mismatches

among

components!

Parallelism

Shared

Memory

Optimizations

Caching

Heterogeneity

+

+

+

+

Industrial Approach: Coherence Interfaces

13

Approach Cache

Coherent

Memory

Consistency

Industrial CXL[1]

✓

CHI[2]

✓

CAPI[3]

✓

Academic Spandex[4]

✓

Crossing Guard[5]

✓

HeteroGen[6]

✓ ✓

Current Approaches

Synthesizes a fresh

MCM-aware

coherence protocol

(and MCM) for each

system it unifies.

From [Oswald+, HPCA‘22]

[1] Debendra Das Sharma and Siamak Tavallaei. Compute Express Link 2.0. 2020.

[2] ARM. AMBA CHI Architecture Specification. 2024.

[3] J. Stuecheli et al. CAPI: A Coherent Accelerator Processor Interface. IBM Journal of Research and Development, 2015.

[4] Johnathan Alsop, Matthew Sinclair, and Sarita Adve. Spandex: A flexible interface for efficient heterogeneous coherence. ISCA 2018.

[5] Lena E. Olson, Mark D. Hill, and David A. Wood. Crossing guard: Mediating host-accelerator coherence interactions. ASPLOS, 2017.

[6] Nicolai Oswald et al. Heterogen: Automatic synthesis of heterogeneous cache coherence protocols. HPCA, 2022.

Directly merges

clusters’ memory

systems and

coherence protocols

14

Current Approaches

Approach Cache

Coherent

Memory

Consistency

Industrial CXL[1]

✓

CHI[2]

✓

CAPI[3]

✓

Academic Spandex[4]

✓

Crossing Guard[5]

✓

HeteroGen[6]

✓ ✓

[1] Debendra Das Sharma and Siamak Tavallaei. Compute Express Link 2.0. 2020.

[2] ARM. AMBA CHI Architecture Specification. 2024.

[3] J. Stuecheli et al. CAPI: A Coherent Accelerator Processor Interface. IBM Journal of Research and Development, 2015.

[4] Johnathan Alsop, Matthew Sinclair, and Sarita Adve. Spandex: A flexible interface for efficient heterogeneous coherence. ISCA 2018.

[5] Lena E. Olson, Mark D. Hill, and David A. Wood. Crossing guard: Mediating host-accelerator coherence interactions. ASPLOS, 2017.

[6] Nicolai Oswald et al. Heterogen: Automatic synthesis of heterogeneous cache coherence protocols. HPCA, 2022.

Modular Verifiable Polite

✓ ✓

✓ ✓

✓ ✓

✓ ✓

✓ ✓

Our work MemGlue
✓ ✓ ✓ ✓ ✓

MemGlue’s

Features

15

Roadmap

MemGlue Design Principles

Ordered MemGlue (Ordered Interconnect Network)

Unordered MemGlue (Unordered Interconnect Network)

Experimental Evaluation & Results

• Bounded proof of correctness (litmus testing)

• Complete proof of correctness (manual)

16

MemGlue Design Principles

Principles 1 & 2: A heterogeneous

cache coherence protocol should be

modular and verifiable.

Memory

L2

L1 L1 L1

Cluster 1

Core 1 Core 2 Core 3

L2

L1 L1

Cluster 2

Core 1 Core 2

L2

L1 L1

Cluster 3

Core 1 Core 2

Proof of

Correctness

of System A

Proof of

Correctness

of System B

BA

≈

17

MemGlue Design Principles

Principles 1 & 2: A heterogeneous

cache coherence protocol should be

modular and verifiable.

Principle 3: A heterogeneous cache

coherence protocol should be polite.

Memory

L2

L1 L1 L1

Cluster 1

Core 1 Core 2 Core 3

L2

L1 L1

Cluster 2

Core 1 Core 2

L2

L1 L1

Cluster 3

Core 1 Core 2

Proof of

Correctness

of System A

Proof of

Correctness

of System B

B L2

L1 L1

ARM Cluster

Core 1 Core 2

System A

L1

ARM

Cluster 1

Core 1

L1

ARM

Cluster 2

Core 2

Memory

System B
MCMA = MCMB

• Any local MCM or protocol supported.

A

• Intra- and inter-cluster performance

minimally restricted.

≈

18

Universal MemGlue

Protocol

Principles 1 & 2: Modularity and Verifiability

A universal protocol addresses Principles 1 & 2.

Cluster

1
Cluster

2

Cluster 3

Memory

Key Insight: A

universal protocol

can be designed to

target the C11 MCM

as the system-wide

MCM for any

MemGlue-unified

system.

Universal MemGlue

Protocol

Cluster

1

Cluster 3

Memory

Cluster

1

Universal MemGlue Protocol

Cluster 3

Memory

Cluster 3

Cluster

2

Cluster

1

Enforces C11

Enforces C11

Enforces C11

19

Principles 1 & 2: Why C11?

C11 is the seminal heterogeneous MCM.

C11

Program

C/C++11

Operation

Load RLX

Load ACQ

Load SC

Store RLX

Store REL

Store SC

Fence ACQ

Fence REL/SC
L2

L1 L1 L1

x86 Cluster

Core 1 Core 2 Core 3

L2

L1 L1 L1

ARM Cluster

Core 1 Core 2 Core 3

Memory operations

MOV

MFENCE

Memory operations

LDR

LDA

STR

STL

DMB ISH

Formally verified compiler

mappings translate C11 memory

order to ISA instructions.

C11 memory

orders

(strengths)

RLX

REL/ACQ

SC
x86

Operation

MOV (from mem)

MOV (from mem)

MOV (from mem)

MOV (to mem)

MOV (to mem)

MOV (to mem)

<ignore>

MFENCE

ARM

Operation

LDR

LDA

LDA

STR

STL

STL

DMB ISH LD

DMB ISH

20

Principles 1 & 2: Leveraging the Heterogeneity of C11

L2

L1 L1 L1

x86 Cluster

Core 1 Core 2 Core 3

L2

L1 L1 L1

ARM Cluster

Core 1 Core 2 Core 3

C11

Program

Memory
MemGlue

Protocol

MemGlue operates in the unified language of C11 strengths.

LDR,

LDA,

STR,

…

MOV,

…

RLX,

REL,

ACQ,

SC

RLX,

REL,

ACQ,

SC

Reverse

compilation

ARM → C11

Reverse

compilation

x86 → C11

21

Principles 1 & 2: Defining C11 Strengths

MemGlue operates in the unified language of C11 strengths.

Thread 1

Wrlx x = 1

Wrlx flag = 1

Thread 2

Rrlx flag = 1

Rrlx x = 0

RLX REL/ACQ SC

Few ordering requirements

beyond coherence.
Writes that happen-before a

REL are visible to reads that

happen-after an ACQ that

reads from the REL.

All SC instructions are totally

ordered.

Thread 1

Wrel x = 1

Wrel flag = 1

Thread 2

Racq flag = 1

Racq x = 0

Thread 1

Wsc x = 1

Wsc flag = 1

Thread 2

Rsc flag = 1

Rsc x = 0

Allowed Disallowed Disallowed

22

Principle 3: Politeness

Implementing MemGlue as an update-based protocol (as opposed to an

invalidation-based protocol) addresses principle 2.

Invalidation-based:

Directory

Core 1 Core 2

x 0 x 0

Wx = 1

Request W x

Inv. x

Addr Sharers

x 1, 2

x 0

Ack. x

Addr Sharers

x 1, 2

Ack. x

x 0 1

23

Principle 3: Politeness

Implementing MemGlue as an update-based protocol (as opposed to an

invalidation-based protocol) addresses principle 2.

Invalidation-based:

Directory

Core 1 Core 2

x 0 x 0

Wx = 1

Request W x

Inv. x

Addr Sharers

x 1, 2

x 0

Ack. x

Addr Sharers

x 1, 2

Ack. x

x 0 1

Directory

Core 1 Core 2

x 0 x 0

Wx = 1

W x

W x

Addr Sharers

x 1, 2

x 0 1x 0 1

Update-based: Pro: lower

read

latency

24

Principle 3: Politeness

Implementing MemGlue as an update-based protocol (as opposed to an

invalidation-based protocol) addresses principle 2.

[7] Liqun Cheng and John B Carter. Extending CC-Numa Systems to Support Write Update Optimizations.SC 2008.

[8] David B Glasco, Bruce A Delagi, and Michael J Flynn. Update-based cache coherence protocols for scalable shared-memory multiprocessors. HICSS, 1994.

Requirement 1: should not

restrict local cluster

implementations.

Requirement 2: should not

restrict inter-cluster

performance.

Allow any local

coherence

protocol.

Allow any local

MCM.

Do not uphold

single-write

multiple reader

invariant.

Performant

under producer-

consumer

communication

patterns.

25

Principle 3: Politeness

Implementing MemGlue as an update-based protocol (as opposed to an

invalidation-based protocol) addresses principle 2.

[7] Liqun Cheng and John B Carter. Extending CC-Numa Systems to Support Write Update Optimizations.SC 2008.

[8] David B Glasco, Bruce A Delagi, and Michael J Flynn. Update-based cache coherence protocols for scalable shared-memory multiprocessors. HICSS, 1994.

Requirement 1: should not

restrict local cluster

implementations.

Requirement 2: should not

restrict inter-cluster

performance.

Allow any local

coherence

protocol.

Allow any local

MCM.

Do not uphold

single-write

multiple reader

invariant.

Performant

under producer-

consumer

communication

patterns.

Update-based Update-based

protocols out-

perform

invalidation-based

protocols[7,8].

Invalidation-

based

26

Roadmap

MemGlue Design Principles

Ordered MemGlue (Ordered Interconnect Network)

Unordered MemGlue (Unordered Interconnect Network)

Experimental Evaluation & Results

• Bounded proof of correctness (litmus testing)

• Complete proof of correctness (manual)

27

MemGlue Overview: Hardware Structures

Network

Shim 1

The Consistency

Concroller (CC):

1. Forwards write updates

to the necessary shims.

2. Supplies the most up-

to-date data on read

misses

L2

L1 L1 L1

Cluster 1

Core 1 Core 2 Core 3

L2

L1 L1

Cluster 2

Core 1 Core 2

Shim 2

Shims are responsible for:

1. Reverse compiling

cluster instructions to

their C11-style analog.

2. Sending writes and

read requests on

behalf of their cluster.

3. Receiving and

propagate write

updates from the CC.

Consistency Controller (CC)

Ordered MemGlue:

messages between shims

and CC arrive in the order

they were sent.

Unordered MemGlue:

messages may be

reordered by the network.

28

Ordered MemGlue Overview: Challenges

Goal: uphold the C11 MCM for any execution of any program

Primary Challenges:

• Maintaining coherence

• Maintaining total order of SC instructions

MemGlue Presentation:

Simplistic

MemGlue

Protocol

Official

MemGlue

Protocol

✓ Coherence

✓ SC Orderings

SC

Orderings

in paper

29

Ordered MemGlue By Example

Shim 1

Address Valid (V/I) Sync Bit TS

x

y

Consistency Controller

Address TS Data Sharers

x

y

Shim 2

Address Valid (V/I) Sync Bit TS

x

y

30

Ordered MemGlue By Example

Shim 1

Address Valid (V/I) Data

x I

y I

Consistency Controller

Address Data Sharers

x 0 2

y 0

Shim 2

Address Valid (V/I) Data

x V 0

y I

Simplistic

MemGlue

• Omit metadata

• Omit C11

strengths

Shim

integration

in paper

31

Ordered MemGlue By Example: Cluster Writes

Shim 1

Address Valid (V/I) Data

x I

y I

Consistency Controller

Address Data Sharers

x 0 2

y 0

Shim 2

Address Valid (V/I) Data

x V 0

y I

Wx = 1

On a local write:On a local write:

1. Shim sends WRITE

message to the CC and

updates its cache state.

32

Ordered MemGlue By Example: Cluster Writes

Shim 1

Consistency Controller

Shim 2

Address Valid (V/I) Data

x V 0

y I

Wx = 1

Address Data Sharers

x 0 2

y 0

On a local write:

1. Shim sends WRITE

message to the CC and

updates its cache state.

WRITE x=1

On a local write:

1. Shim sends WRITE

message to the CC and

updates its cache state.

2. CC updates its cache

and adds source shim

as a sharer.

3. CC forwards WRITE to

sharers.

Address Valid (V/I) Data

x I V 1

y I

33

Ordered MemGlue By Example: Cluster Writes

Shim 1

Consistency Controller

Shim 2

Address Valid (V/I) Data

x V 0

y I

Wx = 1

Address Data Sharers

x 0 1 2, 1

y 0

On a local write:

1. Shim sends WRITE

message to the CC and

updates its cache state.

2. CC updates its cache

and adds source shim

as a sharer.

3. CC forwards WRITE to

sharers.

WRITE x=1

Address Valid (V/I) Data

x I V 1

y I

WRITE x=1

4. Shim writes data within

its cluster.

34

Ordered MemGlue By Example: Cluster Writes

Shim 1

Consistency Controller

Shim 2

Address Valid (V/I) Data

x V 0 1

y I

Wx = 1

Address Data Sharers

x 0 1 2, 1

y 0

On a local write:

1. Shim sends WRITE

message to the CC and

updates its cache state.

2. CC updates its cache

and adds source shim

as a sharer.

3. CC forwards WRITE to

sharers.

WRITE x=1

Address Valid (V/I) Data

x I V 1

y I

WRITE x=1

4. Shim writes data within

its cluster.

35

Ordered MemGlue By Example: Cluster Read Hits

Shim 1

Consistency Controller

Shim 2

Address Valid (V/I) Data

x V 0 1

y I

R x

Address Data Sharers

x 0 1 2, 1

y 0

Address Valid (V/I) Data

x I V 1

y I

R x = 1

36

Ordered MemGlue By Example: Cluster Read Misses

Shim 1

Consistency Controller

Shim 2

Address Valid (V/I) Data

x V 0 1

y I

R y

Address Data Sharers

x 0 1 2, 1

y 0

Address Valid (V/I) Data

x I V 1

y I

On a local read miss:On a local read miss:

1. Shim sends a RREQ

message to the CC.
RREQ y

On a local read miss:

1. Shim sends a RREQ

message to the CC.

2. CC sends the data in a

RRESP and updates

the sharer list.

37

Ordered MemGlue By Example: Cluster Read Misses

Shim 1

Consistency Controller

Shim 2

Address Valid (V/I) Data

x V 0 1

y I

R y

Address Data Sharers

x 0 1 2, 1

y 0 2

Address Valid (V/I) Data

x I V 1

y I

On a local read miss:

1. Shim sends a RREQ

message to the CC.

2. CC sends the data in a

RRESP and updates

the sharer list.

RREQ y

RRESP y=0

On a local read miss:

1. Shim sends a RREQ

message to the CC.

2. CC sends the data in a

RRESP and updates

the sharer list.

3. Shim writes data within

its cluster and updates

its cache state.

38

Ordered MemGlue By Example: Cluster Read Misses

Shim 1

Consistency Controller

Shim 2

Address Valid (V/I) Data

x V 0 1

y I V 0

R y = 0

Address Data Sharers

x 0 1 2, 1

y 0

Address Valid (V/I) Data

x I V 1

y I

On a local read miss:

1. Shim sends a RREQ

message to the CC.

2. CC sends the data in a

RRESP and updates

the sharer list.

3. Shim writes data within

its cluster and updates

its cache state.

RREQ y

RRESP y=0

39

Ordered MemGlue By Example: Timestamps

Shim 1

Consistency Controller

Shim 2

Address Valid (V/I) Data

x V 0

y I

Address Data Sharers

x 0 1, 2

y 0

Address Valid (V/I) Data

x V 0

y I

W x = 1

W x = 2 W x = 3

40

Ordered MemGlue By Example: Timestamps

Shim 1

Consistency Controller

Shim 2

Address Valid (V/I) Data

x V 0 3

y I

W x = 1

W x = 2

Address Data Sharers

x 0 1, 2

y 0

Address Valid (V/I) Data

x V 0 1 2

y I

W x = 3

WRITE x=1

WRITE x=2

WRITE x=3

41

Ordered MemGlue By Example: Timestamps

Shim 1

Consistency Controller

Shim 2

Address Valid (V/I) Data

x V 0 3

y I

W x = 1

W x = 2

Address Data Sharers

x 0 1 2 3 1, 2

y 0

Address Valid (V/I) Data

x V 0 1 2

y I

W x = 3

WRITE x=2

WRITE x=1WRITE x=3

42

Ordered MemGlue By Example: Timestamps

Shim 1

Consistency Controller

Shim 2

Address Valid (V/I) Data

x V 0 3 1 2

y I

W x = 1

W x = 2

Address Data Sharers

x 0 1 2 3 1, 2

y 0

Address Valid (V/I) Data

x V 0 1 2 3

y I

W x = 3

WRITE x=2

WRITE x=1WRITE x=3
Coherence

(required by C11) is

not maintained!

No agreed-

upon total

order on

writes to x.

W x = 1

W x = 2

W x = 3

W x = 3

W x = 1

W x = 2

43

Ordered MemGlue By Example: Timestamps

Shim 1

Consistency Controller

Address TS Data Sharers

x 0 0 1, 2

y 0 0

W x = 1

W x = 2 W x = 3

Addr Valid

(V/I)

TS Data

x V 0 0

y I

Shim 2

Addr Valid

(V/I)

TS Data

x V 0 0

y I

44

Ordered MemGlue By Example: Timestamps

Consistency Controller

Address TS Data Sharers

x 0 0 1, 2

y 0 0

W x = 1

W x = 2 W x = 3

WRITE x=1

Shim 2

Addr Valid

(V/I)

TS Data

x V 0 0

y I

Shim 1

Addr Valid

(V/I)

TS Data

x V 0 1 0 1

y I

45

Ordered MemGlue By Example: Timestamps

Consistency Controller

Address TS Data Sharers

x 0 0 1, 2

y 0 0

W x = 1

W x = 2 W x = 3

WRITE x=2

WRITE x=3WRITE x=1

Shim 1

Addr Valid

(V/I)

TS Data

x V 0 1 2 0 1 2

y I

Shim 2

Addr Valid

(V/I)

TS Data

x V 0 1 0 3

y I

CC Action:

1. Increment

timestamp on each

WRITE received.

46

Ordered MemGlue By Example: Timestamps

Consistency Controller

Address TS Data Sharers

x 0 1 2 3 0 1 2 3 1, 2

y 0 0

W x = 1

W x = 2 W x = 3

WRITE x=2

WRITE x=3WRITE x=1

Shim 1

Addr Valid

(V/I)

TS Data

x V 0 1 2 0 1 2

y I

Shim 2

Addr Valid

(V/I)

TS Data

x V 0 1 0 3

y I

CC Action:

1. Increment

timestamp on each

WRITE received.

CC Action:

1. Increment

timestamp on each

WRITE received.

2. Send timestamp

with WRITEs to

sharing shims.

47

Ordered MemGlue By Example: Timestamps

Consistency Controller

Address TS Data Sharers

x 0 1 2 3 0 1 2 3 1, 2

y 0 0

W x = 1

W x = 2 W x = 3

WRITE x=2

WRITE x=3WRITE x=1
WRITE x=2@2

WRITE x=1@1WRITE x=3@3
CC Action:

1. Increment

timestamp on each

WRITE received.

2. Send timestamp

with WRITEs to

sharing shims.

Shim Action:

1. If and only if the

timestamp check

passes, write the data.

2. Increment the shim

timestamp.

Timestamp Check:

Check whether the

message timestamp

exceeds the shim

timestamp at the

message address.

Shim 1

Addr Valid

(V/I)

TS Data

x V 0 1 2 0 1 2

y I

Shim 2

Addr Valid

(V/I)

TS Data

x V 0 1 0 3

y I

48

Ordered MemGlue By Example: Timestamps

Consistency Controller

Address TS Data Sharers

x 0 1 2 3 0 1 2 3 1, 2

y 0 0

W x = 1

W x = 2 W x = 3

WRITE x=2

WRITE x=3WRITE x=1
WRITE x=2@2

WRITE x=1@1WRITE x=3@3

Shim Action:

1. If and only if the

timestamp check

passes, write the data.

2. Increment the shim

timestamp.

Timestamp Check:

Check whether the

message timestamp

exceeds the shim

timestamp at the

message address.

Shim 1

Addr Valid

(V/I)

TS Data

x V 0 1 2 0 1 2

y I

Shim 2

Addr Valid

(V/I)

TS Data

x V 0 1 0 3

y I

49

Ordered MemGlue By Example: Timestamps

Consistency Controller

Address TS Data Sharers

x 0 1 2 3 0 1 2 3 1, 2

y 0 0

W x = 1

W x = 2 W x = 3

WRITE x=2

WRITE x=3WRITE x=1
WRITE x=2@2

WRITE x=1@1WRITE x=3@3

Timestamp Check:

Check whether the

message timestamp

exceeds the shim

timestamp at the

message address.

Shim Action:

1. If and only if the

timestamp check

passes, write the data.

2. Increment the shim

timestamp.

Shim 1

Addr Valid

(V/I)

TS Data

x V 0 1 2 3 0 1 2 3

y I

Shim 2

Addr Valid

(V/I)

TS Data

x V 0 1 0 3

y I

50

Ordered MemGlue By Example: Timestamps

Consistency Controller

Address TS Data Sharers

x 0 1 2 3 0 1 2 3 1, 2

y 0 0

W x = 1

W x = 2 W x = 3

WRITE x=2

WRITE x=3WRITE x=1
WRITE x=2@2

WRITE x=1@1WRITE x=3@3

Timestamp Check:

Check whether the

message timestamp

exceeds the shim

timestamp at the

message address.

Shim Action:

1. If and only if the

timestamp check

passes, write the data.

2. Increment the shim

timestamp.

Shim 1

Addr Valid

(V/I)

TS Data

x V 0 1 2 3 0 1 2 3

y I

Shim 2

Addr Valid

(V/I)

TS Data

x V 0 1 0 3

y I

51

Ordered MemGlue By Example: Timestamps

Consistency Controller

Address TS Data Sharers

x 0 1 2 3 0 1 2 3 1, 2

y 0 0

W x = 1

W x = 2 W x = 3

WRITE x=2

WRITE x=3WRITE x=1
WRITE x=2@2

WRITE x=1@1WRITE x=3@3

Timestamp Check:

Check whether the

message timestamp

exceeds the shim

timestamp at the

message address.

Shim Action:

1. If and only if the

timestamp check

passes, write the data.

2. Increment the shim

timestamp.

Shim 1

Addr Valid

(V/I)

TS Data

x V 0 1 2 3 0 1 2 3

y I

Shim 2

Addr Valid

(V/I)

TS Data

x V 0 1 2 0 3

y I

52

Ordered MemGlue By Example: Timestamps

Consistency Controller

Address TS Data Sharers

x 0 1 2 3 0 1 2 3 1, 2

y 0 0

W x = 1

W x = 2 W x = 3

WRITE x=2

WRITE x=3WRITE x=1
WRITE x=2@2

WRITE x=1@1WRITE x=3@3

Timestamp Check:

Check whether the

message timestamp

exceeds the shim

timestamp at the

message address.

Shim Action:

1. If and only if the

timestamp check

passes, write the data.

2. Increment the shim

timestamp.

Shim 1

Addr Valid

(V/I)

TS Data

x V 0 1 2 3 0 1 2 3

y I

Shim 2

Addr Valid

(V/I)

TS Data

x V 0 1 2 3 0 3

y I

53

Roadmap

MemGlue Design Principles

Ordered MemGlue (Ordered Interconnect Network)

Unordered MemGlue (Unordered Interconnect Network)

Experimental Evaluation & Results

• Bounded proof of correctness (litmus testing)

• Complete proof of correctness (manual)

54

Unordered MemGlue Network Reordering

Consistency Controller

Address TS Data Sharers

x 0 0 1, 2

y 0 0 1, 2

Wrel x = 1

Wrel flag = 1

Racq flag

Racq x

Shim 1

Addr Valid

(V/I)

TS Data

x V 0 0

y V 0 0

Shim 2

Addr Valid

(V/I)

TS Data

x V 0 0

y V 0 0

55

Unordered MemGlue Network Reordering

Consistency Controller

Address TS Data Sharers

x 0 0 1, 2

y 0 0 1, 2

WRITErel x=1

Shim 1

Addr Valid

(V/I)

TS Data

x V 0 1 0 1

y V 0 1 0 1

Shim 2

Addr Valid

(V/I)

TS Data

x V 0 0

y V 0 0

Wrel x = 1

Wrel flag = 1

Racq flag

Racq x

WRITErel flag=1

56

Unordered MemGlue Network Reordering

Consistency Controller

Address TS Data Sharers

x 0 1 0 1 1, 2

y 0 1 0 1 1, 2

WRITErel x=1

WRITErel flag=1
WRITErel x=1@1

WRITErel flag=1@1

Shim 1

Addr Valid

(V/I)

TS Data

x V 0 1 0 1

y V 0 1 0 1

Shim 2

Addr Valid

(V/I)

TS Data

x V 0 0

y V 0 0

Wrel x = 1

Wrel flag = 1

Racq flag

Racq x

57

Racq flag

Racq x

Racq flag = 1

Racq x = 0

Unordered MemGlue Network Reordering

Consistency Controller

Address TS Data Sharers

x 0 1 0 1 1, 2

y 0 1 0 1 1, 2

WRITErel x=1

WRITErel x=1@1

WRITErel flag=1@1

Shim 2

Addr Valid

(V/I)

TS Data

x V 0 0

y V 0 0

Shim 1

Addr Valid

(V/I)

TS Data

x V 0 1 0 1

y V 0 1 0 1

Addr Valid

(V/I)

TS Data

x V 0 0

y V 0 1 0 1

Contradicts

release-acquire

orderings

defined by C11!

WRITErel flag=1@1

Wrel x = 1

Wrel flag = 1

WRITErel flag=1

58

Racq flag = 1

Racq x = 0

Unordered MemGlue Network Reordering

Consistency Controller

Address TS Data Sharers

x 0 1 0 1 1, 2

y 0 1 0 1 1, 2

WRITErel x=1

WRITErel flag=1@1

WRITErel x=1@1

[WAIT]

Shim 2

Addr Valid

(V/I)

TS Data

x V 0 0

y V 0 0

Shim 1

Addr Valid

(V/I)

TS Data

x V 0 1 0 1

y V 0 1 0 1

Addr Valid

(V/I)

TS Data

x V 0 1 0 1

y V 0 0

Racq flag = 0

Racq x = 1

Wrel x = 1

Wrel flag = 1

WRITErel flag=1

59

Unordered MemGlue Network Reordering

Consistency Controller

Address TS Data Sharers

x 0 1 0 1 1, 2

y 0 1 0 1 1, 2

WRITErlx x=1
WRITErlx x=1@1

Rrlx flag = 1

Rrlx x = 0

Shim 2

Addr Valid

(V/I)

TS Data

x V 0 0

y V 0 0

Shim 1

Addr Valid

(V/I)

TS Data

x V 0 1 0 1

y V 0 1 0 1

Wrlx x = 1

Wrlx flag = 1

WRITErlx flag=1@1
WRITErlx flag=1

Additional Challenge:

• Maintaining release-

acquire orderings

without restricting

relaxed orderings

60

Unordered MemGlue
Metadata

Shim Design

M
e

ta
d

a
ta

C
a
c
h

e

Addr Valid (V/I) Sync Bit TS LWC RFBufCnt

x

y

Msg Buf

icnt ocnt fenceCnt

Counters

SeenSet Cache {}

SeenSet Buffer {}

Seen Sets

CC Design

M
e

ta
d

a
ta

C
a
c
h

e

Address TS Data Sharers LWS

x

y

Msg Buf

Shim

ID

Addr LWC fCnt icnt ocnt

1 x

y

2 x

y

Counters Seen IDs

Shim

ID

Addr Write

ID

Seen

ID

Seen Per

Shim

1 x

y

2 x

y

Red = metadata

from Ordered

MemGlue

Tan = metadata

added by Unordered

MemGlue

See

paper for

details

61

Roadmap

MemGlue Design Principles

Ordered MemGlue (Ordered Interconnect Network)

Unordered MemGlue (Unordered Interconnect Network)

Experimental Evaluation & Results

• Bounded proof of correctness (litmus testing)

• Complete proof of correctness (manual)

62

Results: Litmus Testing for Correctness

We implemented MemGlue in the Murphi model checker and checked

its behavior against a suite of 6,738 litmus tests.

Green = C11

Orange = Ordered MemGlue

Red = Unordered MemGlue

Light = disallowed tests

Dark = allowed tests

Thread 1

W[] x = 1

W[] flag = 1

Thread 2

R[] flag = 1

R[] x = 0

Thread 1

Wrlx x = 1

Wrlx flag = 1

Thread 2

Rrlx flag = 1

Rrlx x = 0

Thread 1

Wrlx x = 1

Wrel flag = 1

Thread 2

Racq flag = 1

Rsc x = 0

…

63

Results: Litmus Testing for Correctness

We implemented MemGlue in the Murphi model checker and checked

its behavior against a suite of 6,738 litmus tests.

Green = C11

Orange = Ordered MemGlue

Red = Unordered MemGlue

Light = disallowed tests

Dark = allowed tests

Takeaway 1: Both MemGlue variants uphold C11.

Takeaway 2: Unordered MemGlue effectively leverages relaxed C11 behavior.

64

Results: Litmus Testing for Politeness

Mapped each test to “strong” clusters and “weak” clusters.

• Strong clusters only emit SC instructions.

• Weak clusters leverage C11 release and relaxed behavior.

Takeaway: MemGlue is polite: it does not overly restrict the

system-wide MCM.

65

Results: Manual Proof of Correctness

Proof Goal: all program outcomes observable in MemGlue are allowed

by the C11 MCM.

C11 MCM is defined axiomatically.

From [Lahav+, PLDI`17]

66

Takeaways

See paper:

• Correctly integrating shims into

their clusters

• Motivating update-based

protocols

• Maintaining C11 under Ordered

and Unordered MemGlue

Next steps:

• Performance results via

simulation

• Mechanize MemGlue’s proof of

correctness

• Define a complete operational

model of C11

67

Takeaways

Conclusions

• MemGlue: MCM-aware cache coherence protocol for

heterogeneous systems

• Modular, verifiable, and polite

• Targets C11

• Update-based

• Promising application for update-based protocols

68

Thank you!

rcleavel@stanford.edu

trippel@stanford.edu

Visit our GitHub

repository:

	Introduction
	Slide 1: Memory Consistency Model-Aware Cache Coherence for Heterogeneous Hardware
	Slide 2: Modern Trends in Hardware Design
	Slide 3: Parallelism and Memory Correctness
	Slide 4: Parallelism and Memory Correctness
	Slide 5: Parallelism and Memory Correctness
	Slide 6: Parallelism and Memory Correctness
	Slide 7: Heterogeneity in Modern Hardware
	Slide 8: Heterogeneity and Memory Correctness
	Slide 9: Heterogeneity and Memory Correctness
	Slide 10: Heterogeneity and Memory Correctness
	Slide 11: Heterogeneity and Memory Correctness
	Slide 12: Industrial Approach: Coherence Interfaces
	Slide 13: Current Approaches
	Slide 14: Current Approaches

	MemGlue Design
	Slide 15: Roadmap
	Slide 16: MemGlue Design Principles
	Slide 17: MemGlue Design Principles
	Slide 18: Principles 1 & 2: Modularity and Verifiability
	Slide 19: Principles 1 & 2: Why C11?
	Slide 20: Principles 1 & 2: Leveraging the Heterogeneity of C11
	Slide 21: Principles 1 & 2: Defining C11 Strengths
	Slide 22: Principle 3: Politeness
	Slide 23: Principle 3: Politeness
	Slide 24: Principle 3: Politeness
	Slide 25: Principle 3: Politeness

	Ordered MemGlue
	Slide 26: Roadmap
	Slide 27: MemGlue Overview: Hardware Structures
	Slide 28: Ordered MemGlue Overview: Challenges
	Slide 29: Ordered MemGlue By Example
	Slide 30: Ordered MemGlue By Example
	Slide 31: Ordered MemGlue By Example: Cluster Writes
	Slide 32: Ordered MemGlue By Example: Cluster Writes
	Slide 33: Ordered MemGlue By Example: Cluster Writes
	Slide 34: Ordered MemGlue By Example: Cluster Writes
	Slide 35: Ordered MemGlue By Example: Cluster Read Hits
	Slide 36: Ordered MemGlue By Example: Cluster Read Misses
	Slide 37: Ordered MemGlue By Example: Cluster Read Misses
	Slide 38: Ordered MemGlue By Example: Cluster Read Misses
	Slide 39: Ordered MemGlue By Example: Timestamps
	Slide 40: Ordered MemGlue By Example: Timestamps
	Slide 41: Ordered MemGlue By Example: Timestamps
	Slide 42: Ordered MemGlue By Example: Timestamps
	Slide 43: Ordered MemGlue By Example: Timestamps
	Slide 44: Ordered MemGlue By Example: Timestamps
	Slide 45: Ordered MemGlue By Example: Timestamps
	Slide 46: Ordered MemGlue By Example: Timestamps
	Slide 47: Ordered MemGlue By Example: Timestamps
	Slide 48: Ordered MemGlue By Example: Timestamps
	Slide 49: Ordered MemGlue By Example: Timestamps
	Slide 50: Ordered MemGlue By Example: Timestamps
	Slide 51: Ordered MemGlue By Example: Timestamps
	Slide 52: Ordered MemGlue By Example: Timestamps

	Unordered MemGlue
	Slide 53: Roadmap
	Slide 54: Unordered MemGlue Network Reordering
	Slide 55: Unordered MemGlue Network Reordering
	Slide 56: Unordered MemGlue Network Reordering
	Slide 57: Unordered MemGlue Network Reordering
	Slide 58: Unordered MemGlue Network Reordering
	Slide 59: Unordered MemGlue Network Reordering
	Slide 60: Unordered MemGlue Metadata

	Results
	Slide 61: Roadmap
	Slide 62: Results: Litmus Testing for Correctness
	Slide 63: Results: Litmus Testing for Correctness
	Slide 64: Results: Litmus Testing for Politeness
	Slide 65: Results: Manual Proof of Correctness
	Slide 66: Takeaways
	Slide 67: Takeaways
	Slide 68: Thank you!

